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IBM Science for Social Good Initiative 
Our projects demonstrate the realm of what’s possible



Events & Social Media
High volumes of event-related tweets 

• 25+ million tweets for Sandy Hurricane 
• 24+ million tweets for 2016 Academy Awards 
• 10+ million tweets for Supreme Court ruling on marriage equality 
• 4+ million tweets about UK 2015 elections 

Endorsed by governmental agencies 

Social media are to enhance, not replace



MicroMappers, CrisisLex, CREES, AIDR, …





What kind of information people share during humanitarian crises?

with Carlos Castillo and Sarah Vieweg



✓ Twitter sample API 
✓ 2012 & 2013 
✓ ~1% random sample of Twitter public stream 
✓ ~130+ million tweets per month

✓ Keyword-based searches 
✓ proper names of affected location 
✓ manila floods, boston bombings, #newyork derailment 

✓ proper names of meteorological phenomena 
✓  sandy hurricane, typhoon yolanda 

✓ promoted hashtags 
✓ #SafeNow, #RescuePH, #ReliefPH

✓ 26 crisis events 
✓ 14 countries and 8 languages 
✓ 12 different hazard types 
✓ earthquakes, wildfires, floods, bombings, shootings, etc. 

✓ 15 instantaneous crises  
✓ 15 diffused crises

✓ 1000 annotated tweets per crisis 
✓ Content dimensions 
✓ Informativeness 
✓ Source of information 
✓ Type of information 

✓  Crowdsource workers from the affected countries

Data Collection & Annotation
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Similar events tend to have a similar distribution of 
message types & sources.
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Temporal Distribution: Information Types
peak
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Sympathy & Support 

Affected Individuals

Infrastructure & Utilities

Other Useful Info.
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How do we collect social media data during humanitarian crises?

with Carlos Castillo, Fernando Diaz, and Sarah Vieweg



Data Collection: How Is It Done?

Tweets are queried by 

Content 
#prayforwest 
#abflood

Location

Low recall: 33%
Not everyone uses the keywords. 

Maximum 400 terms.

Low precision: 12%
Not everyone on the ground talks 

about the event. 
Maximum 25 geo-rectangles.

Maximum 1% of all tweets

longitude: [-97.5, -96.5] 
& latitude: [31.5, 32]
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damage 

affected people 

people displaced 

donate blood 

text redcross 

stay safe 

crisis deepens 

evacuated 

toll raises 

…  …

Key Insight: Distill a Crisis Lexicon



Precision vs. Recall
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Precision is straightforward to measure.
Recall requires a complete data collection. We use geo data as proxy. 
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