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Abstract

Online social data has been hailed to provide unprecedented insights into human phenomena

due to its ability to capture human behavior at a scale and level of detail, both in breadth and

depth, that is hard to achieve through conventional data collection techniques. This has led to

numerous studies that leverage online social data to model or gain insights about real world phe-

nomena, as well as to inform system or methods design for performance gains, or for providing

personalized services.

Alas, regardless of how large, detailed or varied the online social data is, there are limits to what

can be discerned from it about real-world, or even media- or application-specific phenomena.

This thesis investigates four instances of such limits that are related to both the properties of the

working data sets and of the methods used to acquire and leverage them, including: (a) online

social media biases, (b) assessing and (c) reducing data collection biases, and (d) methods

sensitivity to data biases and variability. For each of them, we conduct a separate case study

that enables us to systematically devise and apply consistent methodologies to collect, process,

compare or assess different data sets and dedicated methods.

The main contributions of this thesis are:

(i) To gain insights into media-specific biases, we run a comparative study juxtaposing social

and mainstream media coverage of domain-specific news events for a period of 17 months.

To this end, we introduce a generic methodology for comparing news agendas online

based on a comparison of spikes of coverage. We expose significant differences in the

type of events that are covered by the two media.

(ii) To assess possible biases across data collections, we run a transversal study that systemat-

ically assembles and examines 26 distinct data sets of social media posts during a variety

of crisis events spanning a 2 years period. While we find patterns and consistencies, we

also uncover substantial variability across different event data sets, highlighting the pitfalls

of generalizing findings from one data set to another.

(iii) To improve data collections, we introduce a method that increases the recall of social

media samples, while preserving the original distribution of message types and sources. To
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locate and monitor domain-specific events, this method constructs and applies a domain-

specific, yet generic lexicon, automatically learning event-specific terms and adapting the

lexicon to the targeted event. The resulted improvements also show that only a fraction of

the relevant data is currently mined.

(iv) To test the methods sensitivity, to data biases and variability we run an empirical evaluation

on 6 real-world data sets dissecting the impact of user and item attributes on the perfor-

mance of recommendation approaches that leverage distinct social cues—explicit social

links vs. implicit interest affinity. We show performance variations not only across data

sets, but also within each data set, across different classes of users or items, suggesting

that global metrics are often unsuited for assessing recommendation systems performance.

The overarching goal of this thesis is to contribute a practical perspective to the body of research

that aims to quantify biases, to devise better methods to collect and model social data, and to

evaluate such methods in context.

Keywords: Data biases, evaluation, social media, crisis computing, recommendation systems,

data collection, domain knowledge
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Abstract (Italian)

Ai dati sociali on-line é ormai riconosciuta la capacità di fornire approfondimenti senza prece-

denti riguardo i fenomeni umani, data la loro capacità di catturare comportamenti umani ad una

scala e un livello di dettaglio, sia in ampiezza che in profondità, difficili da ottenere attraverso

tecniche di collezione dei dati tradizionali. Questo ha portato numerosi studi che fanno leva

su tali dati on-line per modellare o acquisire conoscenza sui fenomeni del mondo reale, allo

stesso modo per dare informazioni sui sistemi o progettare metodi allo scopo di incrementare

le prestazioni, o per fornire servizi personalizzati.

Purtroppo, indipendentemente da quanto grandi, dettagliati e variegati siano i dati sociali on-

line, ci sono limiti riguardo cosa può essere dedotto da essi riguardo fenomeni del mondo reale,

o anche riguardo fenomeni specifici dei media e delle applicazioni. Questa tesi investiga quattro

istanze di tali limiti che sono relativi sia alle proprietà delle collezioni di dati prese in esame, sia

ai metodi usati per acquisirli ed utilizzarli, includendo: (a) polarizzazioni degli on-line social

media, (b) valutazione e (c) riduzione delle polarizzazione nella collezione dei dati, e (d) sensi-

tività dei metodi alla polarizzazione e alla variabilità dei dati. Per ognuno di essi, condurremo un

caso di studio separato che ci permetterà di concepire sistematicamente e applicare metodologie

consistenti per collezionare, processare, confrontare o valutare sia collezioni di dati differenti

che metodi dedicati.

I principali contributi di questa tesi sono:

(i) Per acquisire conoscenza nel merito delle polarizzazioni specifiche dei media, effettuer-

emo uno studio comparativo giustapponendo la copertura dei social media con quella dei

media tradizionali riguardo notizie ed eventi specifici dal dominio per un periodo di 17

mesi. A tale fine, introdurremo una metodologia generica per confrontare on-line le no-

tizie basata sul confronto dei picchi di copertura. Esporremo differenze significative nel

tipo di eventi che sono coperti dai due media.

(ii) Per valutare le possibili polarizzazioni tra collezioni di dati, eseguiremo uno studio trasver-

sale che assembla ed esamina sistematicamente 26 collezioni di dati distinte, contenenti

messaggi provenienti dai social media durante una varietà di eventi di crisi che coprono
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un periodo di 2 anni. Mentre troveremo schemi ricorrenti e consistenze, scopriremo una

sostanziale variabilità tra differenti collezioni di dati riguardo eventi, evidenziando le in-

sidie nella generalizzazione dei risultati da una collezione di datiad un’altra.

(iii) Per migliorare le collezioni di dati, introdurremo un metodo che migliora il recupero dei

campioni dei social media, preservando al contempo la distribuzione originale dei tipi di

messaggi e delle sorgenti. Per localizzare e monitorare eventi specifici del dominio, questo

metodo costruisce ed applica un lessico che sia al contempo specifico del dominio ma

generico, imparando automaticamente termini che sono specifici dell’evento ed adattando

il lessico all’evento mirato.

(iv) Per valutare la sensitività dei metodi alla polarizzazione e la variabilità dei dati, eseguiremo

una valutazione empirica su 6 collezioni di dat provenienti dal mondo reale, sezionando

l’impatto degli attributi dell’utente e degli elementi sulle prestazioni degli approcci racco-

mandati che fanno leva su indizi sociali distinti—collegamenti sociali espliciti vs. affinità

implicita su interessi. Mostreremo variazioni di prestazioni non solo tra collezioni di dati

differenti, ma anche all’interno di ogni data set tra differenti classi di utenti o elementi,

suggerendo che le metriche globali sono spesse inadatte per valutare le prestazioni dei

sistemi di raccomandazione.

L’obiettivo generale di questa tesi è quello di contribuire una prospettiva pragmatica al campo

della ricerca che ha come scopo quello di quantificare le polarizzazioni, di concepire metodi

migliori di raccolta e modellazione dei dati sociali, e di valutare tali metodi nel proprio contesto.

Parole chiavi: Polarizzazione dei dati, valutazione, social media, raccolta dei dati, conoscenza

di dominio
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1. Introduction

“We live in a time when big data will transform society. Or so the hype goes.”

—Boellstorff, 2013 [38]

And the hype goes a long way. Yet, the excitement around the potential of big data1 has com-

pelling arguments: It provides information at a scale and level of detail, both in breadth and

depth, that would be hard to achieve through conventional data collection techniques, such as

surveys and user studies [39]. This breadth, depth, and scale opened unprecedented opportu-

nities to provide insights and to answer significant questions about society, policies, or health,

by analyzing digital traces, social media interactions, query logs, health logs, and government

records, among many other data sources [27, 39, 89, 130, 194, 268, 274, 311].

Social “Big” Data

Yet, while big data can come from a multitude of sources and can be used in a variety of

applications, much interest is placed on the so called online usage, social or behavioral data [39,

130]—or, in other words, on the “found data”, as Harford [130] calls it. This data typically

includes digital traces produced by (or about) users, being often hailed to provide insights into

how people communicate, connect, behave, what they like or whom they trust [119, 182, 194,

311]—and it is what interests us in this thesis. Thus, here, we make a distinction between this

sort of data and other types of big data, such as the ones drawn from the Large Hadron Collider’s

experiments, from genetics, environmental sciences or astronomy [130, 141], and throughout

the thesis we refer to it as social data, which we consider to be a broader umbrella concept.

The attention around online social data has particularly grown with the proliferation of “a class

of web sites and applications in which user participation is the primary driver of value” [125],

referred to as the Social Web. To highlight the collective and the user-driven nature of such

data, researchers have coined a variety of terms to refer to it including “human traces”, “usage

data”, or “wisdom of crowds” [25, 26, 89]—see Table 3.1 for a more comprehensive sample of

references to social data. The core idea is that this sort of data can be used to understand both

1A quite poor, vague term [27, 130, 39].
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1. Introduction

Table 1.1.: Examples of references to social data in previous work.

user generated content [55] behavioral logs [89] social media data [22]

usage data [26] or logs [325] personal data streams [299] wisdom of crowds [25]

database of human activities [311] crowd-sourced data [104] activity tracking data [299]

social web [125] query logs [268] digital traces [39]

individual-level behavior and large human phenomena, as well as to offer users with personal-

ized services tailored to their needs.

The diversity of social platforms—from recommendation [207] to social media sites [220],

of purposes—from finding information [326] to keeping in touch with friends [191], as well

as of data points meanings and semantics (e.g., clicks, likes, shares, social links) [311], has

led researchers to explore the potential benefits of these data for a variety of domains and

applications—from providing affected populations or response agencies with actionable infor-

mation during crisis situations [262] to observing the variations in culinary preferences across

geographical areas [6]. For instance, in the context of medical domain, the utility of social

data has been probed by research investigating how to improve or replace traditional systems

for detecting disease spread with either social media posts [190, 275] or search logs [114], for

tracking suicide risk factors [157], for discovering drug side-effects [337], or for identifying

recent mothers at risk of postpartum depression [73]. Social data can, in fact, address the issue

of finding enough “participants” to conduct a sizable study that has often been an important

impediment in fields like medicine or political science [268]. It can also allow an exhaustive

comparison of users across groups or individuals being often used to personalize services, even

if this means providing tailored health advice [299] or what movie to watch [33].

The Limits of Social Data

However, regardless of how large or varied the working data sets are, there are significant ethical

and functional limitations to what can be discerned from social data about real-world phenom-

ena (online or offline), or even about media or application dependent phenomena—which have

yet to be rigorously addressed [274]. Additionally, while the properties of the data sets might

vary, there are shared challenges independent of the peculiarities of the data source or appli-

cation, the platform from which they are collected or the type of data that is collected—albeit

some of them might be more prominent within specific contexts or for certain stakeholders. For

instance, the data sets might not reflect the relevant offline or online populations in their en-

tirety [311] since, often, different demographics tend to be drawn to different social platforms
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1.1. Research Problems and Contributions

leading to important population biases [274]. Additionally, the boundaries of the analyzed data

sets are often set by a handful of keywords used to query them [311], or the data might not even

be available since users are more likely to share information about their positive and extreme

experiences, rather than about their average or negative ones [126, 170].

A Case-Study Driven Approach

The overarching goal of this thesis is to explore various types of limitations or biases that

surface when working with social data across or within media, but also semantic or application

domains, in order to quantify them and to provide insights into how they can be leveraged

to build dedicated tools (as opposed to general purpose ones). To do so, we conducted four

case studies, each focusing on a well defined working domain—social media in crises, climate

change news, and recommendation systems—for which the required data is accessible, and that

are representative of other domains, allowing us to explore various types of challenges that arise

when working with social data.

Such a case-study driven approach is akin to the “model organisms” approach in biology that

refers to the practice of selecting a few species that are widely studied due to various exper-

imental advantages (e.g. accessibility, ease to obtain and maintain, short life-span), in order

to understand fundamental biological phenomena [311].2 While there are limits to such an

approach—as the “model organism” (or, in our case, the working domain) might under- or over-

represent their kind—by allowing researchers to focus on a common set of problems, tools and

data, it facilitates a better understanding of basic, fundamental mechanisms and properties of

their taxa.

1.1. Research Problems and Contributions

In this section, we formulate a set of broad research problems (RPs) concerning various chal-

lenges to leveraging online social traces in order to understand or predict human behavior,

within the context of which we frame the contributions of this thesis. For each of them, we

highlight the specific contexts (defined by domains and applications) in which we study them,

taking what Tufekci [311] calls a “model organisms” approach.

There is a growing body of work [311, 64, 274, 39, 130, 121] that raises concerns about cur-

rent practices of using online social data that have been used to answer a variety of complex

2We note that Tufekci [311] has made this comparison with respect to the dominance of Twitter as the main social

platform of study, yet, we argue that the similarity also holds for popular application domains.
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1. Introduction

Figure 1.1.: Overview of the relationships between the research problems we formulate in this

thesis. By real-world data we refer to data that can be obtained from both offline

and/or online sources.

questions about human behavior, as well as to offer commercial services to their users (e.g. rec-

ommendations of places [238] or friends [233], prediction of election results [242], modelling

of opinions [158]). The research problems we formulate here are grounded in this literature,

which we categorize in three main classes based on previous work [311, 274, 39]: (1) data

collections—stressing on issues of the working data sets, such as representativeness, biases

or completeness; (2) methods—focusing on challenges related to the design, evaluation and

accountability of methods that work with social data; (3) privacy and ethics—highlighting var-

ious ethical caveats such as avoiding discriminatory treatment or protecting users identity. We

emphasize on the first two classes, while we discuss the third when we lay out the context of

the research problems we address here, and at the end of the thesis.

RP1 (Data Collections): Social Media Biases. The prevalence of only a few media platforms

for the study of human behavior without appropriately considering their structural biases3 [311]

has led to important concerns about what can be legitimately inferred from such online social

traces. As Tufekci [311] emphasises, the focus on a certain platform it is not by itself inappro-

priate, yet, more effort needs to be put into understanding the behavioral norms that are specific

to each online social medium [274]. Examples of using social traces to analyse or predict real-

world phenomena include the spread of influenza [130], the life cycle of news events [51], the

3By structural biases we refer to biases as a result of platform-specific mechanisms that shape user behavior.
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use of online platforms for advocacy [280], during crisis events [150], or chatter about weather

events [170], just to name a few. Yet, how reflective is the online behavior within a given social

medium of other social media or of offline, real-world phenomena? Can the findings from a

medium be generalized to other media?

Contextualizing the problem. Empirical evidence suggests that social media communications

are predominantly inspired by events in the news [309]; and, indeed, in this context, an im-

portant area of inquiry has been the way in which online social traces—with a focus on social

media—echoes various types of events from sports [166] or economic events [273] to street

movements [294] and other crisis situations [150], as it is believed that it provides cues about

their impact [309].

Following these observations, our investigation focuses on events covered by mainstream me-

dia to understand how accurately social data mirrors them, and we are particularly interested in

the following questions: How much does social media reflect the news events covered by main-

stream media? Does it focus more on a certain type of news events? What are the characteristics

of those news events?

To tackle these questions, we devise a methodology for comparing news agendas online that

is based on the comparison of spikes of coverage. To operationalize what events of interest

are across different media, we define them in relation to well-defined topics. To this end, for

our investigation, we focus on climate change, and we use this methodology to compare the

coverage of climate change related events in social and mainstream media over a period of

17 months. While our study covers only one social media source, Twitter—a large one and

that is frequently associated with news [188]—our methodology helps to uncover a series of

differences in the type of events covered in the two media. This work is discussed in Chapter 4

and has been published in:

[244] Comparing Events Coverage in Online News and Social Media: The Case of

Climate Change. Alexandra Olteanu, Carlos Castillo, Nicholas Diakopoulos, Karl

Aberer. In Proceedings of 9th International AAAI Conference on Web and Social

Media (ICWSM’15), Oxford, UK, May 2015.

RP2 (Methods): Improving Data Collections. However, even when running a study that is

clearly confined within the context of a given platform, e.g. the representativeness, the com-

pleteness, or the precision of the working data sets with respect to the overall platform’s data

has been challenged [311, 121, 142]—these being often referred to as sampling or self-selection

biases [234, 235]. Notably, for social media studies, a lot of emphasis is put on API limitations
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(or data access limitations) [272, 121] and the problematic reliance on hashtag-based sam-

pling [213, 311, 44]. A key issue is that the choice of keywords and hashtags “is equivalent to

specifying the boundaries of a data collection: working with the wrong list of keywords might

cause relevant data to be missed” [121]. Additionally, for ongoing efforts to advance theories

on, e.g., how online platforms facilitate collective action, these practices and limitations have

theoretical implications altering our understanding of how these technologies are used [64, 121].

Contextualizing the problem. Again, these issues have often been raised and investigated in the

context of studying social platforms use during various events [41] such as natural disasters [64],

protests [311], revolutions [235], elections [108], or political uprisings [121]. In the case of

such studies, these issues are particularly important as, due to their sensitive nature, mistakes

can be costly—e.g. inaccurate predictions, due to missing or faulty data, of disease spread or

stock markets evolution can led to public frenzy, miss- or over-preparation, or to even losing

assets [64, 130, 193].

We follow this direction and focus on crisis situations, being interested in the following ques-

tions: Can we build more comprehensive collections without introducing too many false posi-

tives? Can we build collections that are representative of the overall platform data?

To this end, our strategy is to take advantage of domain knowledge and show that using a

domain specific, yet generic, lexicon containing terms that tend to frequently appear across

various domain specific events we can improve the quality (with emphasis on recall) of the

working data sets. We describe a systematic and general method to build the lexicon using

existing data samples and crowdsourced labeling. We evaluate it using several data sets of social

media communications during different crisis situations, and show that it leads to better trade-

offs between precision and recall than when obtained with crisis-specific keywords manually

chosen by experts. We also show that it helps to preserve the original distribution of message

types. Chapter 5 details this study, which has appeared in:

[245] CrisisLex: A Lexicon for Collecting and Filtering Microblogged Commu-

nications in Crises. Alexandra Olteanu, Carlos Castillo, Fernando Diaz and Sarah

Vieweg. In Proceedings of 8th International AAAI Conference on Weblogs and

Social Media (ICWSM’14), Ann Arbor, US, June 2014.

RP3 (Data Collection): Data Collection Biases. Applying a consistent methodology to collect

and sample data is good practice, yet there can still be confounding, external factors that impact

the properties of the working data sets. Thus, to test the robustness of findings and to understand

the generalizability of observations one should measure the social phenomena or methods on
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multiple distinct data sets [274, 41, 323, 110, 103, 323].

Contextualizing the problem. Referring to research on social media use during disasters, the lit-

erature review by Fraustino et al. [103] indicates that it “tends to examine one catastrophic event

(...) and then imply that the findings are generalizable to other disasters.” This is particularly

problematic as one important goal of this research is to reuse existing data assessment models

for future disasters, yet research has shown that, e.g., prediction models do not generalize well

from one data set to another, not even when the two data sets share common properties [152].

To this end, the questions that we are looking at here are: Can we generalize observations from

one data set to other data sets? What are the similarities and differences among the observed

patterns across working data sets according to extrinsic properties of these data sets (e.g. type

of event, duration, geographical spread)?

To study these questions, we analyze social media use during 26 crisis events and unveil a

set of challenges and opportunities related to the generalization of findings from one event

to another. Our systematic examination of a diverse set of crisis events uncovers substantial

variability across events, as well as patterns and consistencies. When automatically grouping

events based on similarities in the distributions of different classes of tweets, we observed that

despite the variability, similar events tend to be more similar to each other also in terms of the

distribution of information sources and types. This work is covered in Chapter 5, and the results

were published in:

[249] What to Expect When the Unexpected Happens: Social Media Communica-

tions Across Crises. Alexandra Olteanu, Sarah Vieweg, and Carlos Castillo. In Pro-

ceedings of 18th ACM Computer Supported Cooperative Work and Social Com-

puting (CSCW’15), Vancouver, BC, Canada, March 2015.

RP4 (Methods): Assessing Methods Sensitivity. Another area of concern is how to reliably

and systematically evaluate tools and algorithms to account for the biases across and within data

sets, with some researchers advocating for testing the robustness of findings and showing results

for more than one data collection or across different classes of data items in a collection [36,

274, 281, 311]; for adapting to platform changes (e.g. users might change how they interact

with the platform due to functional changes such as a new strategy for ranking items or a new

ability to share content) [75, 274, 323]; or for developing and using standard evaluation metrics

when they do not exist [83].

Contextualizing the problem. One of the most popular (and long-standing) applications that

leverage online social behavioral traces are the recommendation systems [305], which today
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are inescapable in a wide range of web applications, e.g. Amazon or Netflix, to provide users

with books or movies that match their interest. Particularly, the rise of the Social Web [125] has

created new prediction opportunities, resulting in an ever-increased integration of a rich array

of online social cues by the recommendation systems—cues that are acquired from users either

explicitly (e.g., through friend lists, ratings or reviews) or implicitly (e.g., search logs, social

interactions logs, visited websites) [36, 261]. Thus, given the diversity of social signals and

their triggers (e.g. even explicit social relations might stem from friendship, shared interests,

or trust), to understand if the conclusions about a certain recommendation strategy generalize

beyond the context of a certain data set, it is important to run the experiments on distinct data

sets, in order to understand their properties and how they impact performance [281]. As a result,

the questions we explore here are: Are the recommendation strategies performing similarly

regardless of data biases or variations? Are global metrics (i.e. metrics aggregated over all

data points) able to reflect the performance of a given recommendation strategy across various

settings (e.g. different application domains, platforms or user demographics)? Are there specific

data attributes that hint at the performance of one strategy with respect to another?

To answer these questions, we conducted an extensive empirical analysis on 6 real-world pub-

licly available data sets (including both the explicit social network among users and the col-

laborative annotated items), which dissects the impact of user and item attributes, such as the

density of social ties or item rating patterns, on the performance of recommendation strategies

relying on either the social ties or past rating similarity. Our results indicate that one cannot rely

on global metrics to assess a given recommendation system performance not only across data

sets, but also within each data set, across different classes of users or items. For instance, we

see that when the basis of formulating connections among users stems from plain friendship,

rather than from shared interests, the recommendation strategy relying on the social ties leads

to less precise recommendations. In Chapter 7 we describe this study that has appeared in:

[246] Comparing the Predictive Capability of Social and Interest Affinity for Rec-

ommendations. Alexandra Olteanu, Anne-Marie Kermarrec, and Karl Aberer. In

Proceedings of 15th International Conference on Web Information Systems Engi-

neering (WISE’14), Thessaloniki, Greece, October 2014 (Best Paper Award).

We note that, while we can dissociate these research problems, they are often contingent on each

other—e.g. the understanding of the biases of the working data sets can guide a tool evaluation,

which, in turn, can help re-designing it to account for them. Equally important, as we discuss our

case studies in detail, we also cover (although, with a lesser emphasis) a few other important

(yet, orthogonal) challenges: (1) the use of domain knowledge to contextualize the problems
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Figure 1.2.: Overview of the structure and the conceptual flow of this thesis.

and improve performance (a strong leitmotif of this thesis), and (2) data sharing which impacts

the ability to run our analyses on multiple data sets, as well as to ensure and support their

reproducibility and replicability.

Finally, we emphasise that, in this thesis, we seek to study the research problems described

in this section in well defined contexts, highlighting the limitations of current approaches and

outlining recommendations for studies that share similar challenges. We do not attempt to test

or validate them across all existing platforms, algorithms or domains. We discuss in more depth

the classes of challenges for the analysis of online social traces in the following chapters. This

thesis contributes a practical perspective to the body of research that aims to quantify biases, to

devise better heuristics to collect and model social behavioral data, and to evaluate algorithms

in context.
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1. Introduction

1.2. Thesis Outline

We now give an overview of the thesis structure and highlight how the Chapters are grouped

and how they relate to the research problems we have formulated in the previous section. The

conceptual flow of the thesis is depicted in Figure 6.2, while the high-level relations between

the research problems are highlighted in Figure 1.1. The thesis is organized in three parts,

with Part I covering the broad context of the research problems we address in this thesis,

Part II describing two case studies that characterize social data sets by contrasting them with

real-world data or with each other (RP1: Media Biases and RP3: Collection Biases), and,

finally, Part III focusing on methodological challenges related to data acquisition and methods

evaluation (RP2: Improving Data Collections and RP4: Methods Assessment).

Part I: Background

Chapter 2 lays out the broad context in which we frame the research problems we tackle in this

thesis, by surveying relevant prior work that raises concerns and scrutinizes the limits around

the use of social data.

Chapter 3 briefly surveys social applications and platforms, along with examples of what kind

of data is collected from users. It also broadly describes the prototypical pipeline for social data

analysis.

Part II: Limits of Social Data Sets

Chapter 4 looks at media biases, exploring how accurately social data mirrors real-world data,

by focusing on events covered by mainstream media. For this, it introduces a methodology for

comparing news agendas online based on the comparison of spikes of coverage.

Chapter 5 studies to what extent observations made based on a single data set can be general-

ized to other similar data sets. To this end, it appraises the similarities and differences in social

media communications that take place during different crisis events, according to specific char-

acteristics of such events.

Part III: Methods

Chapter 6 investigates how we can improve social data sets at collection time. It introduces an

approach for attaining more representative and comprehensive collections without introducing

too many false positives.

10



1.2. Thesis Outline

Chapter 7 tests the methods generalization power and their sensitivity to social data sets biases

and variability. By focusing on recommendation systems, it shows that the relative performance

of different methods varies not only across data sets, but also within each data set, across dif-

ferent classes of users or items.

Chapter 8 concludes the thesis by summarizing the main contributions and outlining possible

directions for future work.
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Part I.

Background
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2. On the Limits of Using Online Social
Traces

“We must ask difficult questions of Big Data’s models of intelligibility before they

crystallize into new orthodoxies.”—boyd and Crawford, 2012, [39]

This chapter lays out the broad context in which we frame the research problems we tackle

in this thesis by surveying relevant prior work. Here we focus on limits and concerns around

the use of social data as they are raised by previous work, while leaving to the Chapter 3 the

discussion about the typical applications of social data and the prototypical analysis pipeline

employed by such applications.

As the use of social “big” data flourishes as an area of inquiry about various dimensions of hu-

man behavior, the community has also started to ask important questions about good practices

and the limitations of using social data sets originating from e.g. social media platforms, search

engines, recommendation sites or location-based services, among others. Core issues include

data biases as a result of collection or sampling strategies [274], the lack of coverage or rep-

resentativeness with respect to the targeted populations [39, 121, 311], data access limits [41],

biases due to platform and media specific norms [274], algorithmic stereotyping and profiling

of users [57], or privacy risks [320], to name a few. We organize such issues highlighted by

prior work in three main classes based on [39, 274, 311]:

(1) Limits of data collections: surveying existing challenges when working with social data

sets such as representativeness, validity, population and sampling biases, completeness, or

temporal variations (Section 2.1);

(2) Methodological challenges: surveying issues related to the design, evaluation, or general-

izability of analyses or methods for collecting or utilizing social data set (Section 2.2);

(3) Privacy and ethics: discussing various ethical caveats when leveraging social data such as

discriminatory treatment as a result of algorithmic reinforcement of human prejudice, or

the risk of breaching users privacy (Section 2.3).

15



2. On the Limits of Using Online Social Traces

While some of the prior work we survey defines or addresses research problems and challenges

of social data within a general framework [39, 125, 130], most studies discuss them in the

context of specific platforms such as social media [311], search engines [326] or recommenda-

tion systems [281]. We note that challenges such as those related to publishing the research in

this area (e.g. discussing space and format limitations, or the publication time frame) [41, 324]

or the scalability of the analysis methodologies [27], are outside the scope of this Chapter.

Additionally, we also recognize that the categories we identify and highlight are not mutually

disjoint and often overlap, and that the suggested solutions for various challenges might pull in

opposite directions (e.g. to solve privacy related issues one might need to compromise various

performance metrics).

2.1. Limits of Social Data Sets

We start our prior work exploration with research that raises concerns about what can be legiti-

mately inferred from existing social data sets [274, 311], as well as research that tries to quantify

the limits of such data (e.g. the biases, the lack of coverage or representativeness) [234, 160]—

with this Chapter focusing for the most part on the former. See Table 2.1 for a comprehensive

overview of relevant prior work.

Media and Platform Specific Biases

Due to limitations in obtaining the needed data to conduct various observational studies, the

research relying on online social signals to study and model human behavior is dominated by

only a few social media and platforms. Alas, such research cannot be generalized, as each

medium and platform exhibit its own structural biases [311] that can lead to very specific phe-

nomena [274]; yet, this is often overlooked.

Functional biases & APIs. First, social data is typically proprietary and not directly accessible

to the research community. As a consequences, the data access APIs restrictions and the terms

of service set their own boundaries to what a working data set may or may not contain [39, 41,

212, 235]. For instance, a social media data set will typically include only content that is public

and un-deleted, or to which the users have given explicit access (e.g. through agreements, by

accepting a social connection) [39, 212], meaning that from the very beginning a fraction of

relevant data is bound to be left out. Then, depending on the platform, the available APIs for

accessing the data set further limits to what and how much of the public data can be accessed,

often without clear guarantees about the properties of the provided data—e.g. much research

16



2.1. Limits of Social Data Sets
T

ab
le

2
.1

.:
C

h
al

le
n
g
es

ar
o
u
n
d

w
o
rk

in
g

d
at

a
co

ll
ec

ti
o
n
s

an
d

th
ei

r
m

en
ti

o
n

in
th

e
re

la
te

d
w

o
rk

.N
o
te

th
at

th
e

ta
b
le

ei
th

er
q
u
o
te

s,
p
ar

ap
h
ra

se
s

o
r

ag
g
re

g
at

es
su

ch
m

en
ti

o
n
s.

F
u
tu

re
re

fe
re

n
ce

s
sh

o
u
ld

b
e

d
ir

ec
te

d
to

th
e

o
ri

g
in

al
p
ap

er
s.

T
y

p
es

S
u

b
-T

y
p

es
R

el
at

ed
ca

te
g

o
ri

es
fr

o
m

p
re

v
io

u
s

w
o

rk

M
ed

ia
&

p
la

tf
o

rm
b

ia
se

s

F
u

n
ct

io
n

al
b

ia
se

s

&
A

P
Is

A
P

Is
re

st
ri

ct
io

n
s

(e
.g

.
ra

te
li

m
it

s,
fi

lt
er

in
g

b
y

co
n

te
n

t
o

r
g

eo
g

ra
p

h
ic

al
lo

ca
ti

o
n

)
ar

e
p

o
te

n
ti

al
so

u
rc

es
o

f
b

ia
s

[1
2

1
],

v
io

la
ti

o
n

o
f

te
rm

s
o

f

se
rv

ic
e

[4
1

],
m

is
si

n
g

th
e

ec
o

lo
g

y
fo

r
th

e
p

la
tf

o
rm

,
p

la
tf

o
rm

h
as

it
s

o
w

n
su

it
e

o
f

af
fo

rd
an

ce
s

[3
1

1
],

p
la

tf
o

rm
sp

ec
ifi

c
v

s.
p

la
tf

o
rm

in
d

ep
en

d
en

t

p
h

en
o

m
en

a
d

u
e

to
h

o
w

an
d

w
h

at
d

at
a

is
st

o
re

d
,

o
r

d
u

e
to

d
y

n
am

ic
,

p
ro

p
ri

et
ar

y,
se

cr
et

,
u

n
d

o
cu

m
en

te
d

,
p

la
tf

o
rm

sp
ec

ifi
c

al
g

o
ri

th
m

s
[2

7
4

]

P
o

p
u

la
ti

o
n

b
ia

se
s

d
if

fe
re

n
t

d
em

o
g

ra
p

h
ic

s
ar

e
d

ra
w

n
to

d
if

fe
re

n
t

p
la

tf
o

rm
s

[1
7

0
,

2
7

4
,

3
1

1
];

n
o

t
re

p
re

se
n

ta
ti

v
e

o
f

th
e

p
o

p
u

la
ti

o
n

at
la

rg
e,

sk
ew

ed
to

y
o

u
n

g
an

d

u
rb

an
d

em
o

g
ra

p
h

ic
g

ro
u

p
s

[6
4

],
[T

w
it

te
r]

o
v
er

-r
ep

re
se

n
ts

d
en

se
ly

p
o

p
u

la
te

d
re

g
io

n
s

an
d

m
en

,
an

d
ex

h
ib

it
s

a
a

h
ig

h
ly

n
o

n
ra

n
d

o
m

sa
m

p
le

o
f

th
e

o
v
er

al
l

ra
ce

/e
th

n
ic

it
y

d
is

tr
ib

u
ti

o
n

[2
2

8
],

ch
ar

ac
te

ri
st

ic
s

li
k
e

g
en

d
er

,
ra

ce
an

d
et

h
n

ic
it

y,
an

d
p

ar
en

ta
l

ed
u

ca
ti

o
n

al
b

ac
k

g
ro

u
n

d
ar

e
as

so
ci

at
ed

w
it

h
th

e
u

se
o

f
o

n
li

n
e

so
ci

al
p

la
tf

o
rm

s
[1

3
1

],
re

p
re

se
n

ti
n

g
th

e
fu

ll
b

re
at

h
o

f
co

m
m

u
n

ic
at

iv
e

ac
ti

v
it

ie
s

ta
k

in
g

p
la

ce
o

n
th

e
p

la
tf

o
rm

o
r

th
e

o
v
er

al
l

p
u

b
li

c
d

eb
at

e,
h

o
w

w
el

l
th

e
p

la
tf

o
rm

d
at

a
re

p
re

se
n

ts
so

ci
et

y
[4

4
]

B
eh

av
io

ra
l

b
ia

se
s

p
eo

p
le

b
eh

av
e

d
if

fe
re

n
tl

y
o

n
d

is
ti

n
ct

p
la

tf
o

rm
s

[2
7

4
,

2
0

5
,

2
5

1
],

h
u

m
an

s
al

te
r

th
ei

r
b

eh
av

io
r

w
h

en
aw

ar
e

o
f

b
ei

n
g

o
b

se
rv

ed
[2

7
4

],
st

at
u

s-

re
la

te
d

b
eh

av
io

rs
an

d
n

o
rm

s
m

ay
n

o
t

tr
an

sl
at

e
to

o
th

er
p

la
tf

o
rm

s
[3

1
1

],
th

e
p

la
tf

o
rm

p
la

y
s

a
ro

le
in

sh
ap

in
g

th
e

re
p

re
se

n
ta

ti
o

n
o

f
an

ev
en

t,

re
p

re
se

n
ta

ti
o

n
an

d
d

is
cu

ss
io

n
o

f
an

ev
en

t
o

n
so

ci
al

m
ed

ia
ar

e
a

co
n

st
ru

ct
ed

p
h

en
o

m
en

o
n

,
[T

w
it

te
r]

d
at

a
is

n
o

t
a

re
p

re
se

n
ta

ti
v
e

sa
m

p
le

o
f

p
eo

p
le

ex
p

er
ie

n
ce

s
[6

4
],

d
at

a
is

b
ia

se
d

d
u

e
to

co
n

te
n

t
ra

n
k

in
g

an
d

u
se

r
in

te
rf

ac
e

[2
7

],
m

o
st

co
n

te
n

t
is

g
en

er
at

ed
b

y
a

sm
al

l
fr

ac
ti

o
n

o
f

ac
ti

v
e

u
se

rs
[2

5
]

C
o

ll
ec

ti
o

n
b

ia
se

s
&

re
p

re
se

n
ta

ti
v
en

es
s

D
at

a
q

u
er

y
in

g

&
sa

m
p

li
n

g

li
m

it
at

io
n

s
o

f
h

as
h

ta
g

-b
as

ed
re

se
ar

ch
an

d
sa

m
p

li
n

g
[4

1
,

3
1

1
,

6
4

,
4

4
],

ex
p

li
ci

t
an

d
im

p
li

ci
t

b
ia

s
in

h
er

en
t

to
a

d
at

a
co

ll
ec

ti
o

n
ap

p
ro

ac
h

[2
7

4
],

w
o

rk
in

g
w

it
h

th
e

w
ro

n
g

li
st

o
f

k
ey

w
o

rd
s

m
ig

h
t

ca
u

se
re

le
v
an

t
d

at
a

to
b

e
lo

st
[1

2
1

]

T
em

p
o

ra
l

co
n

si
d

er
at

io
n

s

ch
an

g
e

in
th

e
u

sa
g

e
o

f
a

p
la

tf
o

rm
[2

7
4

];
(f

o
r

ev
en

ts
)

so
ci

al
m

ed
ia

d
at

a
se

ts
ty

p
ic

al
ly

d
ep

ic
t

a
sp

ec
ifi

c
ti

m
e

p
er

io
d

ar
o

u
n

d
th

e
sp

ik
e

in
th

e

m
es

sa
g

es
p

o
st

ed
o

n
a

so
ci

al
p

la
tf

o
rm

,
w

h
ic

h
o
v
er

lo
o

k
s

e.
g

.
th

e
ca

u
se

s
o

r
th

e
af

te
rm

at
h

[6
4

];
lo

n
g

-t
er

m
lo

g
s

o
f

u
se

r
b

eh
av

io
r

al
lo

w
s

th
e

o
b

se
rv

at
io

n
o

f
lo

n
g

-l
as

ti
n

g
ef

fe
ct

s
o

f
e.

g
.a

n
ex

p
er

ie
n

ce
[2

6
8

],
q

u
er

y
in

g
b

eh
av

io
r

d
ep

en
d

s
o

n
h

is
to

ri
ca

lp
er

io
d

,t
im

e
o

f
th

e
d

ay
,t

im
e

p
er

io
d

[2
8

6
],

“S
w

is
s

ch
ee

se
”

d
ec

ay
o

f
T

w
it

te
r

te
st

co
ll

ec
ti

o
n

s
d

u
e

to
co

n
te

n
t

d
el

et
io

n
s

[2
8

]

C
o

n
te

x
t-

sp
ec

ifi
c

b
ia

se
s

u
se

o
f

p
ro

x
y

p
o

p
u

la
ti

o
n

s
to

o
p

er
at

io
n

al
iz

e
th

e
d

efi
n

it
io

n
o

f
a

g
ro

u
p

[2
7

4
],

d
if

fe
re

n
t
d

em
o

g
ra

p
h

ic
an

d
so

ci
al

g
ro

u
p

s
m

ay
b

eh
av

e
d

if
fe

re
n

tl
y

[3
1

1
];

se
lf

-s
el

ec
ti

o
n

o
r

se
lf

-r
ep

o
rt

in
g

b
ia

se
s

(e
.g

.
ch

o
o

si
n

g
to

u
se

a
co

nv
en

ti
o

n
o

r
to

ta
lk

ab
o

u
t

a
to

p
ic

)
d

u
e

to
ex

te
rn

al
,

co
n

fo
u

n
d

in
g

fa
ct

o
rs

(e
.g

.

w
ea

th
er

,
so

ci
al

p
re

ss
u

re
)

[1
7

0
,
3

1
1

];
o

p
in

io
n

s
ex

p
re

ss
ed

o
n

so
ci

al
m

ed
ia

ar
e

n
o

t
a

ra
n

d
o

m
sa

m
p

le
o

f
th

o
se

o
f

al
l

u
se

rs
as

th
er

e
ex

is
t

se
lf

-r
ep

o
rt

im
b

al
an

ce
s/

re
p

o
rt

in
g

b
ia

se
s

w
.r

.t
n

eg
at

iv
e

se
n

ti
m

en
t
an

d
av

er
ag

e
fe

el
in

g
s

[1
2

6
];

b
ia

s
d

u
e

to
in

d
iv

id
u

al
ch

ar
ac

te
ri

st
ic

s
o

r
p

ri
v
ac

y
co

n
ce

rn
s

[1
7

0
];

se
lf

-c
le

an
in

g
an

d
se

lf
-c

en
so

rs
h

ip
[3

2
0

,
6

9
];

b
eh

av
io

r
ch

an
g

es
as

th
e

ta
sk

at
h

an
d

b
ec

o
m

es
m

o
re

d
if

fi
cu

lt
[2

3
];

q
u

er
y

in
g

b
eh

av
io

r
v
ar

ie
s

ac
ro

ss

to
p

ic
s

[2
8

6
];

th
e

te
m

p
o

ra
l

o
ri

en
ta

ti
o

n
o

f
m

es
sa

g
es

is
d

ep
en

d
en

t
o

n
fa

ct
o

rs
li

k
e

ex
p

er
ie

n
ce

,
n

u
m

b
er

o
f

fr
ie

n
d

s,
o

r
m

en
ta

l
h

ea
lt

h
[2

7
9

]

S
iz

e
&

R
ep

re
se

n
ta

ti
v
en

es
s

b
ig

g
er

d
at

a
ar

e
n

o
t

al
w

ay
s

b
et

te
r

d
at

a
[3

9
,

1
1

2
],

is
su

es
w

it
h

co
v
er

ag
e

an
d

re
p

re
se

n
ta

ti
v
en

es
s

o
f

m
es

sa
g

es
an

d
co

m
m

u
n

ic
at

io
n

n
et

w
o

rk
s

[1
2

1
],

so
ci

al
m

ed
ia

d
at

a
is

al
w

ay
s

p
ar

ti
al

an
d

in
co

m
p

le
te

[6
4

],
d

at
a

re
d

u
n

d
an

cy
,

sp
ar

si
ty

tr
ad

e-
o

ff
s,

b
ig

g
er

d
at

a
is

n
o

t
th

e
sa

m
e

as
h

av
in

g
th

e
ri

g
h

t

d
at

a
[2

7
],

it
is

n
o

t
ju

st
ab

o
u

t
th

e
si

ze
o

f
th

e
d

at
a

[1
9

3
]

D
at

a
sh

ar
in

g
,

re
p

ro
d

u
ci

b
il

it
y

&
o

th
er

ch
al

le
n

g
es

D
at

a
sh

ar
in

g
in

d
ep

en
d

en
t

d
at

a
se

ts
[2

7
4

],
p

ro
p

ri
et

ar
y

p
la

tf
o

rm
s

[3
1

1
],

ab
o

u
t
5
%

o
f

st
u

d
ie

s
o

b
ta

in
ed

th
ei

r
T

w
it

te
r

d
at

a
fr

o
m

ex
is

ti
n

g
d

at
a

se
ts

o
ri

g
in

al
ly

co
ll

ec
te

d
b

y
o

th
er

re
se

ar
ch

er
s

[3
4

2
],

re
p

li
ca

b
il

it
y

o
f

re
su

lt
s,

fu
ll

d
o

cu
m

en
ta

ti
o

n
o

f
m

et
h

o
d

s,
sh

ar
in

g
o

f
d

at
a

[4
1

],
co

ll
ec

ti
o

n
s

ar
e

o
b

ta
in

ed

th
ro

u
g

h
n

o
n

-t
ra

n
sp

ar
en

t
sa

m
p

li
n

g
m

et
h

o
d

s
[2

0
3

],
p

ro
p

ri
et

ar
y

n
at

u
re

o
f

so
ci

al
m

ed
ia

le
ad

s
to

tw
o

k
ey

p
ro

b
le

m
s:

d
at

a
re

p
li

ca
b

il
it

y
(w

h
en

d
at

a

sh
ar

in
g

is
p

ro
h

ib
it

ed
)

an
d

d
at

a
d

ec
ay

(w
h

en
it

em
s

ar
e

d
el

et
ed

as
ti

m
e

p
as

se
s)

[1
6

1
],

d
at

a
sh

ar
in

g
ca

n
d

im
in

is
h

th
e

ti
m

e
an

d
ef

fo
rt

to
co

ll
ec

t

d
at

a
[3

2
4

],
o

n
ly

fe
w

[r
es

ea
rc

h
]

p
ap

er
s

sh
ar

e
th

ei
r

d
at

a
at

al
l

[1
4

9
]

D
ig

it
al

d
iv

id
e

d
ig

it
al

d
iv

id
e

[6
3

,
3

9
],

d
at

a
“h

av
es

"
an

d
“h

av
e-

n
o

ts
"

[4
1

],
th

e
n

ee
d

fo
r

d
em

o
cr

at
iz

in
g

d
at

a
sc

ie
n

ce
[5

8
],

re
p

ro
d

u
ce

s
th

e
u

n
eq

u
al

p
o
w

er
re

la
-

ti
o

n
s

[6
4

],
p

ri
v

il
eg

ed
ac

ce
ss

[6
4

],
“e

m
b

ed
d

ed
re

se
ar

ch
er

s”
[2

7
4

],
sh

ar
in

g
ca

n
al

le
v

ia
te

in
eq

u
al

it
ie

s
in

d
at

a
ac

ce
ss

[3
2

4
]

S
p

am
&

N
o

n
-h

u
m

an
s

n
o

n
-h

u
m

an
s,

sp
am

m
er

s,
b

o
ts

,
o

rg
an

iz
at

io
n

ac
co

u
n

ts
,

“a
u

th
en

ti
c"

h
u

m
an

u
se

rs
[2

7
4

],
n

o
n

-h
u

m
an

ag
en

ts
,

b
o

t
ac

ti
v

it
y,

fa
k
e

ac
co

u
n

ts
[6

4
],

w
eb

sp
am

[2
7

]

O
th

er
is

su
es

o
n

li
n

e
v

s.
o

ffl
in

e
b

eh
av

io
r

an
d

b
in

ar
y

[6
3

,
3

1
5

],
th

er
e

ar
e

n
o

n
ea

t
d

iv
is

io
n

s
b

et
w

ee
n

n
ew

s
an

d
th

e
p

er
so

n
al

,
b

et
w

ee
n

p
u

b
li

c
ev

en
ts

an
d

p
ri

v
at

e

ef
fe

ct
[6

4
],

g
o
o
d
,

la
b
el

ed
d
at

a
se

ts
ar

e
h
ar

d
to

b
u
il

d
[6

0
],

le
g
al

o
b
li

g
at

io
n

to
re

m
o
v
e

d
el

et
ed

co
n
te

n
t

[2
1
2
]

17



2. On the Limits of Using Online Social Traces

on Twitter relies on data endpoints that give access to at most 1% of the public tweets [120,

160, 234, 235]. Indeed, while some data access APIs seem to provide a random sample of

the relevant content [234], others lead to biases with respect to e.g. the topical making of the

relevant content [235] as well as the follower-followee network structure [120].

Second, each platform carries its own suite of affordances, i.e. the set of actions that can be

performed and are encouraged, and the set of actions that are not supported or are hard to

perform [311]. This set of possible actions tend to shape the behavioral norms on each platform,

influencing this way the type of content that is shared or produced. Moreover, each platform

uses proprietary, platform-specific algorithms to promote, or show content or users that affect

what content or with which social connections users are likely to interact with on the platform,

further biasing the “found data” [130, 274, 311].

Thus, in summary, such functional peculiarities of each online social environment directly im-

pact what user demographics would be more likely to be drawn to them, as well as what kind of

actions the users are likely to perform. To zoom into specific challenges, and following Ruths

and Pfeffer [274], we further make a distinction between population biases—as a result of the

misrepresentation of human population due to platform-specific characteristics, and behavioral

biases—as a result of the misrepresentation of human behavior due to platform-specific char-

acteristics.

Population Biases. The population biases typically refer to how well the working data sets

collected from a given platform reflect either the corresponding offline or online populations,

or those of distinct media or platforms. Indeed, yearly surveys from the Pew Research Center1

of social media users demographics show that the demographic composition of the major social

media platforms consistently differ both with respect to each other, as well as with respect to

the offline or the Internet population [53, 54]. These observations have also been supported by

academic observational studies through social media [228, 131, 274]. For instance, [228] finds

that Twitter users significantly over-represent men and the population of regions that are densely

populated. Another study, looking at social media use among a tech giant employees, shows

that although growth in use and acceptance across social media platforms is not uniform, in

time privacy and other user concerns regarding the use of these platforms tend to level off [18].

Behavioral Biases. To understand how differently people behave within different environments

(e.g. different media or platforms) or how much the user behavior on social platforms reflects

the real-world phenomena, a number of studies have contrasted them—yet, such studies are still

scarce. For instance, [304] compares web search with microblogging search, finding that they

1Pew Research Center: http://www.pewinternet.org/
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2.1. Limits of Social Data Sets

capture different use cases: queries on Twitter are shorter and more popular, focusing more on

temporally relevant information and people, while search queries tend to change and develop

as users learn more about a topic. Other research looks at the interplay between what people

search and what people share on social media regarding health information [74], observing

that information seeking and sharing practices are both dependent on the condition type (e.g.

being a serious condition or not). Leskovec et al. compared news media with web-logs, showing

that there is a few hours lag between the attention peak of a meme (short sentence or phrase)

in mainstream media and web-logs [200]. A number of other studies look at the similarities

and differences among different social media platforms along, e.g., adoption patterns [189],

user personalities [147], news spreading [198], geographical and socioeconomic patterns [202],

shared content [251] and behavioral patterns [205].

Collection Biases and Representativeness

Alas, the data collections are not shaped only by the platform-specific phenomena. Even when a

study is clearly confined within the context of a given medium and platform, quality dimensions

such as the representativeness, the completeness or the precision of the working data sets with

respect to the overall platform’s data has been challenged [311, 121, 142]. Depending on the

problem at hand and the targeted context, other characteristics of the data collection such as

the temporal parameters or the characteristics of the studied topic can also affect the reliability

of the observations made on this data collection: e.g., as the general social context changes,

users might also change how they use a given social platform, which might in turn render the

observations from a past cross-sectional study as void.

Data Querying & Sampling. Often the data collections are obtained by retrieving the content

matched by user-provided queries through public APIs. These queries typically contain to-be-

matched parameters for content, time and/or geographical location. To this end, one recurrent

discussion is the problematic reliance on keyword- or hashtag-based sampling [213, 311, 44].

A key issue is that the choice of keywords and hashtags “is equivalent to specifying the bound-

aries of a data collection: working with the wrong list of keywords might cause relevant data

to be missed” [121]. Hashtags are often associated with different social, political and cultural

frameworks, and, thus, the samples built on top of them can embed different dimensions [311].

Research has shown that data sampling affects the various communication networks that can

be reconstructed based on the social media posts, and a poorly specified query to the sam-

pling APIs exacerbate the biases in network properties (e.g. clustering, degree of correlation)

more than the APIs limitations [121]. Ultimately, hashtags are just a form of social tagging

19



2. On the Limits of Using Online Social Traces

(or folksonomies2), and even if we assume that all relevant content is tagged, their usage is

often inconsistent (e.g. different formats, spellings or word ordering) [259]. Thus, while some

attempts to standardize the use of hashtags exists, e.g. see [241] for humanitarian emergencies,

in order to better capture the main information types of interest for relevant stakeholders, the

data collections built on top of them will still reflect only partially the relevant data, as it will

overlook possible communications among actors that might not respect these standards.

Temporal Considerations. The temporal parameters of the data are also important, as often

they are also part of a data set boundary specifications. For instance, data collections corre-

sponding to real-world events are typically defined by the peak in the activity on a given social

platform. However, different events may have different temporal fingerprints (e.g. disasters can

have longer term consequences than sport events) that the corresponding social data sets de-

fined around activity peaks might miss [64]. In addition, there may be also protracted situations

such as wars or other long-lived events, whose temporal fingerprints may be characterized by

multiple peaks.

However, events are not the only relevant case. For instance, even when tracking social signals

at a more aggregate level, one will notice general variations regarding when and for how long

the users focus on a certain topic—variations that can be triggered by current trends, season-

ality or periodicity in activities, surprise factors, or even noise [265]. Looking at search query

logs, researchers have observed that long-term query logs (as opposed to short-term, within

session query information) provide better insights into the evolution of users interests, needs or

experience over time (e.g. pregnancy or career evolution), or of the causes or impacts of certain

personal events (e.g. having a medical condition) [268, 101].

Furthermore, it is important to note that neither the platform population or the subgroup en-

gaged in a discussion topic, as well as the platform suite of affordances, are static. They often

exhibit critical temporal dynamics. Regarding the former, in his ICWSM’11 keynote3 shows

how design decisions and platform chances influenced users behaviour—e.g. making the mes-

sage composer much shorter lead to a significant decrease the length of the messages users

write, but an increase in the number of messages they send. Regarding the latter, research has,

for instance, shown that the demographic composition and participation of users posting about

the 2012 Election cycle in the US is non-stationary and unpredictable over time [84].

An equality important problem is the “Swiss cheese” decay of social data as a result of content

2A form of ad-hoc categorization and labelling of the data within social systems [289].
3The keynote is available at: http://videolectures.net/icwsm2011_seligstein_trends/. ICWSM is a top-tier confer-

ence on computational social science
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2.1. Limits of Social Data Sets

deletions and social platforms terms of service—rendering such content as unusable after a time

window—which can leave important holes in the working data collections [28].

Context-specific Biases. Other challenges come from the innate properties of the applications,

of the semantic domains or of the populations of interest. Common issues include so called

self-selection or self-reporting biases [126, 170]. For instance, a study might be interested in

the opinion of young college graduates about a new law. Yet, most users will not self-label them-

selves along such demographic criteria. Thus, to run the study researchers would typically rely

on proxy populations that e.g. report on a social platform to be alumni of set of universities—

and, this can end up being an important source of bias [274]. In fact, in the context of predicting

users political orientation, researchers have shown that the choice of the proxy population dras-

tically influence the performance of various methods [60]. Or, in other words, it highlights that

the performance of such latent attributes inference varies across a given data set demograph-

ics, the study showing that existing classifiers tend to do much better on politicians than on

“normal” users (with only a few political posts) [60]. This is important, as depending on var-

ious factors, such as social pressure, privacy concerns, topical interest, language, personality,

culture, socioeconomic status or education, different users will adapt in a different way their

online behavior (e.g. what they share, search or pay attention to) or even the choice of using a

social platform [126, 320, 230, 69, 170, 311, 286].

Data Size & Representativeness. Notably, in the light of Google Flu Trends success in 2008 [114],

Chris Anderson4 remark in his provocative essay “The End of Theory” [16] have sparked in-

tense academic debates:

“Who knows why people do what they do? The point is they do it, and we can track

and measure it with unprecedented fidelity. With enough data, the numbers speak

for themselves.” (with emphasize added)

Yet, while the ability to capture large volumes of data brings along important scientific op-

portunities [175, 194, 113], size by itself is not enough. Indeed, such claims have soon been

debunked by numerous critics [39, 112, 130, 193] which emphasise that they ignore, among

others, that the size does not necessarily make the data better (e.g. more representative, more

precise) [39], and that “there are a lot of small data problems that occur in big data” which

“don’t disappear because you’ve got lots of the stuff. They get worse.” [130]. Thus, more often

than not, the problem is finding the right data [27] as, for instance, if adding more data also

increases the level of noise, the quality and reliability of the results deteriorate.

4Editor in chief at Wired Magazine.
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2. On the Limits of Using Online Social Traces

In fact, this makes the need to understand the data samples (particularly, their limitations) more

important than ever [39]. For instance, social media users do not represent all people, nor are

they representative of them [130]. It is even more essential to understand the missing data as it

is to study the “found data" (as Harford calls it [130]).

Data Sharing, Reproducibility, and Other Challenges

Data Sharing & Reproducibility. The previous discussions about data collection also point to

the importance of properly documenting the methods and parameters used to sample, collect,

and process the data sets [41, 39]. This would not only better support the interpretation of the

findings, but also assist other researchers in reproducing the same or similar data collections,

when data sharing is not possible—typically due to the social platforms restrictive terms of

service or due to proprietary data [324, 161]. Jurgens et al. [161] discern two key problems

due to this proprietary nature of social data: data replicability—when data sharing is prohibited

by terms of service or privacy constrains, and data decay—when the original data set cannot

anymore be reconstructed due to content deletions.

However, when it is possible, data sharing makes it easier to both reproduce or replicate5 results

by preventing redundant, labor-intensive and time-consuming data collection [324]. Thus, while

these various constrains hinder data sharing—which is rather an exception than a rule (with e.g.

less than 10% of research papers on online social networks doing so [149]), there are efforts to

aid reproducibility and future comparison by releasing and open-sourcing data and tools [172,

162, 218].

Digital Divide. Furthermore, one key concern related to data access is the potential to further

deepen the divide between the data “haves" and the data “have-nots" [41], as well as between

those that have or have not the computational skills needed to access and collect data [39, 324].

Additionally, the former is perceived as being further exacerbated by the raise of “embedded"

researchers [274] that have privileged access [64] to certain social platforms resources. In this

context, data sharing is seen as necessary means to make such research more inclusive and to

reduce the existing data access gap [324].

Other challenges. Alas, there are many other challenges that we have not discussed, some of

which are equally important and hard to address. For instance, another important challenge is

how to separate non-humans (spammers, bots, organization accounts) from “authentic” human

users and account for them [39, 64, 274]. Similarly, noise or content redundancy—lexical (e.g.

duplicates, re-tweets, re-shared content) and semantic (e.g. near-duplicates, same meaning) of-

5See [88] for the difference among the two.
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ten account for a significant-fraction of content [27], and might negatively impact the tools

utility (e.g. showing redundant content to users) [266]. Other issues include the the difficulty to

construct high-quality labeled data sets [60], to dissociate offline and online phenomena [315]

or between public events and their private effect (e.g. what belongs to the public sphere and

what to the private one) [64].

2.2. Methodological Challenges

Even when we understand the limitations of various working data sets of human traces, we still

remain with methodological challenges to e.g. correct or at least account for biased, erroneous

or missing data, to properly evaluate tools that leverage social data and validate observations, or

interpret results in context (e.g. by considering the suitability of methods for the problem at hand

or for the platform specific mechanisms) [39, 274, 60, 311]. See Table 2.2 for a comprehensive

overview of relevant prior work.

Data management, processing and correction

Data management. One of the first challenge when working with big social data sets is how

to adequately manage them. From a system perspective efficiently capturing, storing and main-

taining ever growing volumes of social data sets are the main challenges (and very important

ones) [27, 41] to enable the analysis of such data. In doing so, the systems rely on various data

categorization, aggregation, and organization heuristics that optimize for certain (popular) types

of data access (or queries), which might in turn favor e.g. the dominant classes of content (e.g.

opinions produced by a certain demographic group) and popular data analyses, while neglecting

or concealing others [25, 258, 32]. Alas, the way in which data is structured and categorized can

have un-wanted consequences for the users associated with it, if it misrepresents them [258].

For instance, Amazon generated public outrage when it consistently mis-categorized LGBT

material as “adult” material resulting in their demotion in search results [137]. The biases, as-

sumptions or prejudice of those designing and building the systems can even make their way

to how the data is organized at the lowest levels [91]. It is important to devise adequate data

management methodologies to ease its use while also avoiding such pitfalls.

Algorithmic variations and biases. This last point is also closely related to the need to gain

understanding about how algorithms learn to discriminate from traces of human behavior, re-

flecting existing biases [225], and what are the possible trade-offs between performance, privacy

or fairness [122, 225].
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2.2. Methodological Challenges

Indeed, in recent years, an increasing number of researchers have steered their attention to

measuring the impact and accounting for possible biases as a result of algorithms reinforcing the

beliefs of users [32, 176, 226, 326]. For instance, search engines typically alter how they rank

results based on what users click on, although a large fraction of the answers the users settled on

are incorrect [326]. This is problematic, as users tend to accept the answers that confirm their

biases, and the ranking algorithms tendency to mirror them can be counterproductive [326].

Other examples include delegating decision making such as “which candidate to employ?” to

data mining techniques. Many of these techniques are designed to find correlations (that do not

account for possible confounding factors) and are often dependent on what proxy attributes that

are believed to be indicative of the desired qualities are predicted (e.g. predict the grades in

annual reviews as a proxy for good employees), or on the choice of attributes to observe (e.g.

the selected set of characteristics to represent the candidates). Yet, choosing different attribute

to observe or predict impacts what data mining actually finds, and it can re-enforce existing

prejudice about protected classes [32].

Correcting and accounting for biases and errors. Biases and errors can occur at any step in

a data analysis pipeline (see Chapter 3 for an brief overview of such a pipeline). The first

opportunity to account for them is at data collection time. As we mentioned in the previous

section, much research relies on public APIs to retrieve the working data sets, and these APIs

typically set limits to how much data one can retrieve (e.g. 1% for Twitter public API), and

conceal the details about how the returned data points where selected from all relevant data

points [120, 160, 234, 235] (see [267] for an overview of API limits). However, beside trying to

pick the most advantageous API from several provided [235], many APIs support various types

of predicates to query for data—typically referred to as the query language—that concede some

flexibility (although, limited) to control the quality of the data collection [120]. Indeed, research

has adapted information retrieval techniques to generate more optimal queries [272], to expand

and adapt existing queries [213], or to split the queries and run multiple in parallel [276], with

the goal of mitigating existing biases and improving the quality of the data collections (typically

by improving their completeness).

Another opportunity to correct existing biases and errors is after the data is collected. Straight-

forward approaches to improve data quality, is to detect and remove spam or non-human ac-

counts [274, 64], or duplicates (lexical or semantic) [27]—yet, such distortions can be hard to

correct or remove as well [274]. Other (more preferable) alternative are to make appropriate sta-

tistical corrections that are based on known or identified (data set-specific) biases [274, 90], to

conduct causal analyses whenever possible in order to adjust for e.g. selection biases [243, 87],

or to apply re-weighting and post-stratification or multi-regression techniques [318, 335], which
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2. On the Limits of Using Online Social Traces

effectiveness have been proved for adjusting survey and polling data. Biases can also be ac-

counted for while designing algorithms, or when interpreting results, challenges that we will

discuss next.

Exploiting context and biases. While biases in the data are typically perceived as sources of in-

accuracy that needs correction [109, 274], if understood, they can also guide the design of more

efficient tools [126, 199]. For instance, [126] shows that self-reporting biases provide useful sig-

nals for sentiment tracking by creating rich transient social contexts (e.g. for polarizing topics

a happy event for a group of users might be bad news for another) that assist with labels acqui-

sition and with dealing with sentiment prediction, even when sudden sentiment drifts occur. In

the context of ranking peer recommendations, [199] shows that a quantitative understanding of

position bias (the tendency to pay more attention to items at the top of a list) can be exploited

to manipulate users attention.

In fact, most biases emerge as a result of various circumstances forming the specific settings (or

context) of the analyzed phenomena—e.g. less data might be available about average feelings

than extreme ones as users might find them more worthy to talk about [126]. Thus, if taken

out of context the analyzed data sets lose from their meaning [39], observation also emphasised

in [311].

Understanding the context can among others inform algorithmic design. For instance, context

can aid in understanding what are the sensitive attributes for a certain user classification task

which can, in turn, inform decisions such as who should be considered as similar to whom

and help avoiding discriminatory treatment [90]. Further, culture and language act as barriers

to social media communications and can explain some of the observed patterns (or the lack of

them) with respect to the information flows [105].

A core dimension in understanding the context, is the problem domain (e.g. topicality, type of

media, data semantics). For instance, a good example of leveraging the domain are the special-

ized search services (e.g. domain-specific search), known as search verticals, that focus on a

specific information seeking task [19]. By focusing on a domain they can often leverage clear,

un-ambiguous relationships between concepts specific to the domain, providing more precise

and relevant results [331].
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2.2. Methodological Challenges

Evaluation and Validation

“There is (. . . ) the need for increased awareness of what is actually analyzed.”

—Ruths and Pfeffer, 2014, [274]

Adequate Evaluation and Generalizability. A last opportunity to account for biases, as well

as to test the robustness of findings and to understand the generalizability of observations,

is at evaluation time. When the biases cannot be corrected as there is little knowledge about

the level of biasing, or the biasing factors are too complex or hard to untangle, one should

run e.g. longitudinal, comparative, multi-data sets, multi-platforms or cross-domains analy-

ses [41, 103, 110, 274, 281, 323, 323]. When access to multiple, distinct data sets is limited,

one can still re-run the analyses on data sets that are altered to introduce or remove noise or

biases [274]. Further, when Liang and Fu [203] tried to generalize and replicate 10 known

propositions made by prior work, they failed to do so for 6 of them due to variations of how

the data sets were collected, but also due to inconsistencies in measurements, or differences in

the analysis methodologies. Thus, when hypotheses about real-world phenomena are formu-

lated and put forward to be tested, the results of different methods for collecting, measuring or

processing the data should also be juxtaposed [274, 311].

Also, important data variations exist not only across platforms or data sets, but also within each

data set across categories of users [60]. For instance, users from different geographical areas

have different food consumption patterns [6, 325], thus analyses should account for such differ-

ences and evaluate tools across various user demographic criteria. Specifically, one can zoom

in and also check if the findings hold across different relevant data sets demographics [36, 60].

Additionally, some researchers also advocate for considering the platform changes to ensure

that the findings are not just temporal trends (e.g. users might change how they interact with

the platform due to functional changes such as a new ranking strategy of items or a new abil-

ity to share content) [75, 323, 274], which can be done by replicating the findings also across

time [203, 193]. While longitudinal, comparative, multi-data sets or multi-platforms research

exists [18, 128, 174, 196, 6], they tend to be the exception, rather than the rule.

Negative Results and Disclaimers. Further, while failed studies or negative results are use-

ful for learning about what hypotheses have been rejected, or what are the suitable data sets

and methods, publications of negative results are scant [107, 274]. Additionally, disclaimers

are also important. If errors or biases were not ruled out, researchers must discuss the gaps

and limitations in the working data sets as well as of the employed methodologies and their

studies [64, 274, 311].
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2. On the Limits of Using Online Social Traces

Standards and Documentation. Emphasis has also been put on the need to develop baselines

and guidelines [311, 324] and to find a common ground regarding the methodological ap-

proaches [63]. In addition, the provenance of working data sets, the workflows, the home-grown

tools and methodologies often need to be better documented [41, 324]. While research in the

area of text mining or information retrieval typically follows standard evaluation procedures

and metrics, for many social media analysis tasks—specifically for domain-specific application

such as crisis informatics—this is not the case [41, 83]. Thus, effort should be put in developing

and using standardized experimental methodology when they do not exist [83].

Interpretation and Inference

Interpretation. Much research rests upon the assumption that online behavioral traces reflect

in some quantifiable way real-world phenomena [22, 71, 173, 271]. On the one hand, such

data can reveal fascinating insights about e.g. how people interact [317] or react to major life

changes [71], and have helped confirming prominent social theories such as the small-world

phenomenon [179, 312]. On the other hand, it has also been shown that there are significant

differences even between what data explicitly gathered from users (e.g. the explicit social re-

lationship among them) indicate and what the data implicitly acquired from them does (e.g.

the interaction graph among users which exhibits a larger diameter and a smaller clustering

coefficient than the graph drawn from explicit social links) [327].

Consequently, one first needs to critically question from what various social activity traces or

processes stem from. For instance, social links between users can stem from friendship, trust or

shared interests, and thus can embed very different social cues. The same holds for (re-)sharing

content on social media: it can be a sign of endorsement, a result of finding the content inter-

esting or amusing, yet, users also (re-)share content to ridicule or disapprove. Thus, the same

mechanisms or processes might capture different signals depending on the context [271, 311]—

yet these distinctions can be hard to make by automated methods or when looking at data in

aggregate. As Tufekci advises [311], to understand the various signals behind the same mecha-

nism or process, one might consider to pull-out and qualitatively analyze small data samples.

Further, when the researcher lacks the context, it might be difficult to account for what is or

is not in the data—for instance, in the context of analyzing social media communication in

crisis situations, a geographically distant researcher may have difficulties in understanding the

cultural context and the event peculiarities [64]. Another aspect that should also be considered,

is how different methodological alternatives may lead to different interpretations of what it is in

the data [41].
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Unintelligible actions and dedicated mechanisms. So, to reiterate, often the social signals can

be unintelligible to algorithms as users may behave differently depending on the context (e.g.

depending on to whom their content will be visible), yet such context is not always clear [311].

This unintelligibility is often dependent on the mechanisms available on each social platform

(e.g. having a like button, but not a dislike one), but also on the variations in platform-specific

algorithms and mechanisms in response to users actions [193]. This should be considered when

interpreting the performance or the findings of tools and analysis methods.

Opportunistic Approaches and Methods Suitability. As discussed earlier in this Chapter, there

are a number of challenges with respect to the working data sets, including their collection—yet,

some types of data are are much easier to harvest than others [41, 323]. Alas, this has resulted

in much research focusing on e.g. a few data sources [311] raising concerns about the research

agenda being opportunistically driven by the access to data, tools or ease of analysis [41, 274,

323]—or how Baeza-Yates puts it: “we see a lot of data mining for the sake of it” [27].

A similar concern also regards the employed methods, like for content or user classification,

when the performance is rather the result of e.g. “feature hunting” [274]6 instead of being based

on a priori hypotheses—which encourages the practice of harking [169].7 Hence, for each task

at hand, even if the data or the methods are old, imported from other fields, adjusted or new, an

argument should be made about their suitability [274, 311].

2.3. Ethical Challenges

“Just because it is accessible does not make it ethical.”—boyd & Crawford, 2012, [39]

But, boyd and Crawford are not unique in their call for caution [341]. Scientists [32, 57, 91, 167]

and journalists [136, 176, 226] alike urge both scientists and practitioners to carefully scrutinize

their use of social big data against a variety of possible ethical pitfalls such as breaching users

privacy [122], or racial, socioeconomic status or gender-based profiling [32, 57]. Alas, only a

small number of publications (between 2007 and 2012) relying on such data from Twitter was

found to include any discussion or even an acknowledgement of any ethical challenges [342].

In the US, the Belmont Report puts forward a set of ethical guidelines for research that in-

volves human subjects [100] that often serve as standards. The report is based on three ethical

principles—respect to persons, beneficence (emphasizing on the “Do no harm” philosophy and

6Trying out multiple features until finding one that delivers important improvements.
7Harking refers to the practice of hypothesizing after the results are known.
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2. On the Limits of Using Online Social Traces

Table 2.3.: Ethical challenges when working with social data and their mention in the related

work. Note that the table either quotes, paraphrases or aggregates such mentions.

Future references should be directed to the original papers.

Types Related categories from previous work

Ethics (in general) ethical perspective [63], ethical issues [64], ethical considerations [342, 212], how definitions of

public and private information apply to Internet data, and whether an avatar or profile is a per-

son [212, 214], indicators of legal and ethical risk [167]

User consent consent [63], unaware their messages were made public, users consent [64], re-purposing such data

for research may violate the expectations of content creators [users] [148], no specific consent was

sought or received from the subjects, user profile information being considered freely accessible

for collection and research [341], public content [. . . ] consent is therefore implied [212]

Privacy &

confidentiality

privacy concerns [65, 341], securing the privacy of the user, confidentiality [63], balancing pri-

vacy versus accuracy, misuse and protection of confidential and private data, anonymization [122],

privacy self-management, concern that people identities would be exposed [64], privacy expecta-

tions of Twitter users [342], privacy risks, concerns and practices [320], privacy, anonymity, legal

and ethical restrictions [27], machine learning presents new challenges for protecting individual

privacy [140], data re-identification [124]

Data sensitivity &

discrimination risks

multiple data feeds can be combined to generate intimate insights without a person [64], ethi-

cal appropriateness of archiving public tweets for research purposes [342], privacy management

and ethical concerns for using deleted content [14, 212], user data is created in highly context-

sensitive spaces [39], data sets can be combined, and thus sensitive knowledge can be inferred

from benign data that are routinely shared [140], racial stereotyping and profiling [57], machine

learning presents new challenges for ensuring fair use of data, need to increase technical expertise

in consumer protection to address discrimination issues arising from big data [140], risks of bias

or discrimination based on the inappropriate generation of personal data [65]

Others Concerns [provide users with] access to the derivatives from their informational activities [64], the analy-

sis process, along with the decision-making behind it are “black-boxed” [258], need to increase

transparency into how companies use and trade data [140], building a digital dossier [124]

on minimizing risks to research participants while maximizing the benefits to the society), and

justice—across three primary areas of application—informed consent, assessment of risks and

benefits, and selection of subjects.

More recently, it was the Facebook contagion experiment [183]—where the researchers ma-

nipulated users social feeds to include more or less of a certain kind of content based on the

expressed emotions—that sparked an intense debate on whether public sources of user data

should be used only on the basis of being accessible [148].8 This incident was followed this

year by an unprecedented move from the SIGCOMM 2015 Program Committee9 which de-

cided to accept a paper on measuring censorship [46] on the condition of placing a prominent

note at the top of the paper highlighting their ethical concerns [237]—which drew further atten-

tion to the issue. On the bright side, in our surveying we also noticed an increased inclusion of

a discussion about (or at least a mention of) the ethical challenges in research papers (for good

examples see [101, 184, 227]).

8Also note that a large fraction of the papers surveyed in Table 2.3 were published after this experiment.
9http://conferences.sigcomm.org/sigcomm/2015/, SIGCOMM is a top-tier conference on computer networking.
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User consent. A main concern with these studies is that they leverage user data without any kind

of consent from them [148, 341]. Although publicly available, user data is inherently sensitive

as e.g. users might not anticipate a particular use of their data, especially when created in a

context-sensitive space and time [39]. This becomes even more delicate when e.g. analyzing

user demographic attributes [57]. While asking consent might be often seen as unpractical [39],

we should note that there are a few efforts to design methodologies for acquiring consent while

minimizing the burden on the participants [148].

Privacy and Confidentiality. A related concern regards the risk of breaching users privacy by

e.g. exposing their identity or personal information [64, 341]. Often, social data can reveal

more about an individual that what it appears on the surface: while people may choose not

to reveal certain information about themselves (e.g. age, gender, sexual orientation, religious

views), such information can be predicted using often easily accessible digital records of human

behavior [182]. Such breaches can have harmful consequences [32] such as stalking, identity

theft, discrimination or black-mailing [124].

Alas, even when flexible privacy settings exist, users rarely change the default privacy set-

tings [320]. However, even as users consent is implied when they generate content in public

online spaces, “people privacy preferences depend on their circumstances" [64]. Take the case

of social media use during crisis situations by vulnerable populations that may publicly share

personal information to either assist others, update their family and friends, or ask for help.

Such disclose is closely coupled with the context, and, thus, data use and share should be ex-

tensively scrutinized and the privacy of these users should be protected [64]. Existing solutions

that balance between privacy and accuracy should be considered [122].

Data Sensitivity and Discrimination Risks. Privacy breaches are often possible because pub-

licly shared data sets can be combined to gain insights about private individuals without their

knowledge [64, 122, 124, 140]. To address this, the sharing and archival of data embedding per-

sonal information [342], as well as the use of content that users have explicitly deleted should

be cautiously handled and anonymization should be considered [14, 65, 212].

Additionally, as briefly discussed in the previous section, there is also the danger that the use of

social data can result in some sort of discrimination against protected classes [32]. While some

argue that the reliance on automated decision making processes that are trained on such data can

lead to more objective and accurate decisions, many examples have shown that they can in fact

inherit, propagate, or even amplify the biases and prejudice of past decision-makers with respect

to various factors such as race, age, gender or socioeconomic groups [32, 65, 176, 226] (often

referred to as algorithmic discrimination [176]). While such a result is often unintentional, it
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can have a variety of consequences: companies could use such information to practice price

steering and discrimination [128], or users employment, credit or housing prospectives may be

affected due to being stereotyped and profiled based on their race [32]. This is concerning as the

existing laws often cannot handle such issues [32, 65]. Further debate on regulations of personal

data collection, use, or disclosure is thus required [65].

Finally, there is a need for more transparency [140]: users should be provide with information

about how their data is used, or given access to the artifacts resulted from their personal data [64,

124]. Alas, more often than not, the way in which user data is processed and analyzed to support

decision making remains “black-boxed” [258].

32



3. Social Data Applications and Analysis

In this Chapter, we highlight when—for what purposes and applications—and how—what is

the data processing pipeline—the social data is used. To this end, after quickly reviewing the

main goals when leveraging social data, we briefly survey a sample of online social applications

and platforms along with examples of the type of data that is collected from users (Section 3.1).

We then briefly describe the prototypical pipeline for social data processing and analysis that is

employed by such applications and platforms (Section 3.2).

The use of online social data has particularly grown with the increased popularity of “a class

of web sites and applications in which user participation is the primary driver of value” [125],

often referred to as the Social Web. As a result, today, everything that users do online could

be captured, recorded and mined for current or future potential uses, typically, by four main

stakeholders, identified by Oboler et al. [239] as: (1) business clients, (2) government, (3) other

users within the social media platform, and (4) the platform provider itself. The societal, com-

mercial and academic value of this data stems largely from its personal nature, scale, variety,

level of detail and accuracy or timeliness, and its use can be categorized depending on the main

objective:

(1) To study the human behavior: when the focus is on predicting, modeling, or describing

various, on-line or off-line, real-world phenomena with data sets of online digital traces

of human behavior—with examples including the modeling of information diffusion or

flow [115, 270], social influence [30], disease transmission [275], migration patterns [338],

or language usage [230]. In this context, the next Chapters (belonging to Part II of this

thesis) look at the extent to which social media data mirrors the news events covered by the

online mainstream media, as well as how much the insights we gain about social media use

in crisis situations from one crisis-event data set can be generalized to other similar data

sets.

(2) To aid design: when the focus is rather on exploiting usage patterns in order to augment, op-

timize, design, build or evaluate systems, tools, methods or algorithms—with examples in-
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cluding search results [304, 12], decision support systems [173], targeted advertising [322],

urban planning [264], users modeling [85], content reliability assessment [143, 247], or

peer-to-peer social networks [248]. In the last part of the thesis (Part III), we discuss two

case studies highlighting how such usage patterns can guide the design and the evaluation

of methods working with social data.

3.1. Social Applications and Platforms

To draw a more concrete picture of the applications of social data, in this section, we give a

brief overview with specific examples.

The social applications and platforms can range from social media (e.g. Youtube, Pinterest),

networking (e.g. LinkedIn, Facebook) or recommendation sites (e.g. Amazon, Booking.com) to

Q&A (e.g. Stackoverflow, Quora) or collaborative sites (e.g. Wikipedia, Micromappers), among

others. Given the diversity of value propositions that these sites put forward (e.g. “Meet your

next favourite book” for Goodreads, or “The Free Encyclopedia” for Wikipedia, or “The best

answer to any question” for Quora), when exploring the various types of such applications and

platforms, which have at their core user participation, often, a first question is:

What are the main motivations of users for using these social applications and

platforms?

To answer this question, much research has explored it from both a quantitative and qualitative

perspective, finding that users have a variety of reasons for using such applications or platforms,

some of which tend to be more common across such social sites—e.g. to construct an online

representation of self [206] or learn new things [159, 123]—while others tend to be rather

specific to a class of applications—e.g. to keep up with friends on social networking sites [191,

159], to collaborate with others on collaborative sites [68], to seek domain-specific information

on speciality sites [217], or to look for a romantic partner on dating sites [96].

This diversity is also indicative of the fact that various applications or platforms rather com-

plement each other by supporting different functionalities, purposes or domains of focus. For

instance, Teevan et. al [304] show that when it comes to search, users tend to use web search

and search on a microblogging site for different purposes: microblogging search being used to

monitor content about specific transient topics or from given users, while web search is used

to develop and learn about a topic. Similarly, other researchers have shown that, on different

social media or networking platforms, users may have different attitudes [287] and tend to use
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Table 3.1.: Examples of social data, applications types and existing platforms.

Types of applications
• bookmarking

• citizen journalism

• collaborative knowledge building

• collaborative problem solving

• crowdfunding

• crowdsourcing

• data analytics

• expert finding

• match making

• question answering

• recommendation systems

• search

• social networking

• social coding

• user-generated maps

Types of data
• check-ins

• crowdsourced annotations

• emails

• explicit social interactions

• implicit social interactions

• instant messages

• location traces

• product rating & review

• mobile phone tracking

• online commercial transactions

• user comments & reviews

• user generated content

• social media content

• web search logs

• web page visit & usage logs

Platforms
• Amazon.com

• Alibaba.com

• Bing.com

• Booking.com

• Digg.com

• Facebook.com

• Flickr.com

• Foursquare.com

• Ebay.com

• Github.com

• Goodreads.com

• Google.com

• Kickstarter.com

• Linkedin.com

• Medium.com

• Micromappers.com

• Netflix.com

• Pinterest.com

• Quora.com

• Stackoverflow.com

• Tencent.com

• Twitter.com

• Weibo.com

• Wikipedia.org

• Youtube.com

them for different purposes as well [313]: e.g. Facebook is more often used for personal self-

presentation, while Linkedin tends to be used for professional self-promotion. The variety of

purposes and functions can also be observed in Table 3.1 which highlights a variety of applica-

tions types, as well as of types of data and existing social platforms.

Furthermore, the many use cases and motivations for using these sites, as well as the multi-

purpose nature of some of them, has resulted in users searching, creating or sharing information

on a diversity of topics including work [93], food [6], health [74], relations [106], weather

events [170], and many others. This topical diversity promises to enable researchers to observe

and learn about both personal, everyday experiences [171, 173], as well as large-scale, collective

events [166, 114, 294, 250, 280].

3.2. Analysis Pipeline Overview

Even with the diversity of social applications, types of data, and uses we highlighted in the pre-

vious section, there are a number of data processing and analysis steps that are typically shared

across applications. To this end, in this section, we broadly describe the prototypical analy-

sis pipeline when working with social data, which we break down into 6 generic steps high-

35



3. Social Data Applications and Analysis

Figure 3.1.: Common steps in (social) data analysis along with example questions that can in-

fluence the decisions at each step. The steps enclosed by the dashed line are often

coalesced as they are closely coupled to each other.

lighted in Figure 4.1. For each of these steps, depending on the main objective of the analysis,

we discuss a few possible differences regarding alternative e.g. data acquisition and selection

strategies, methods or evaluation strategies:

Step 1: Problem Definition. For each study, one would typically articulate the goal as either

(1) designing, augmenting, optimizing or evaluating a method or tool, or (2) understanding,

explaining or describing a real-world phenomenon; and the context as either domain-specific

or open-domain, general-purpose. Such aspects are important as, for instance, when building a

dedicated tool for a given domain one may actually leverage the usage patterns or knowledge

that are specific to this domain since improving the performance for this domain is the main

goal. However, when aiming to develop a general-purpose method or to describe a broad real-

world phenomena with online social data one may instead need to validate the performance or

observations across different domains, and to correct or account for various domain specific

biases.
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Step 2: Data Acquisition. Once equipped with a problem, the next step in addressing it is

to locate the necessary data, which typically needs to satisfy certain characteristics and quality

constraints. In the case of sources of online social data, the data is typically acquired through

public APIs [267]—with some studies re-using existing data collections, yet this is rare. An

important objective here is to build or use data collections that reflect the true incidence of e.g.

the attributes or activities of the targeted data items (e.g. users, topics, messages, events) [32].

Depending on the problem at hand—e.g. depicting a certain class of users, measuring general

usage trends on a platform or evaluating a new method—different data acquisition strategies

that offer different trade-offs between various quality dimensions (e.g. precision, recall, rep-

resentativeness) may be considered. For instance, if the goal is to study eyewitness accounts,

using geo-located content, rather than content matched by a set of keywords, might help iden-

tify more eyewitness accounts although the proportion of relevant content might be lower—as

the geo-based collections tend to have a lower precision (we discuss this particular aspect in

Chapter 6). If the goal is to devise a new method for a well known problem, ideally, one would

either test it on existing data sets that were used to evaluate previously proposed solutions, or

would test it on several different data sets [274]—thus, multiple data collections of different

properties might be needed.

Step 3: Selection of Features and Data Dimensions. Then, the constructs (or data items)

of interest (e.g. topics, users, messages, events) are represented by a set or vector of features

(e.g. n-grams for content, various demographic criteria for users)—this is typically referred to as

feature definition, extraction and selection; and are typically classified along various dimensions

(e.g. positive or negative messages, high- or low-impact events). In other words, the features are

usually used to describe each data item (e.g. all words in a message) and represent attributes

chosen to be observed, whereas the classes are used to group and organize the data items (e.g.

all messages on a given topic).

To avoid pitfalls like selecting a feature representation that fails to capture all relevant details

about the data items (e.g. ignoring users age when grouping users by education level), one

might consider exploring various ways of capturing the same characteristic of a data item (e.g.

both a user diet and her daily activities may be indicative of her health). Additionally, the future

analyses and the selection of a set of classes should consider aspects such as how well separated

these classes are (e.g. are there data items that match the definitions of different classes?), or if

the dimensions used to determine them are independent (e.g. having a high income and having

a college degree).
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Step 4: Methods Selection. After the data is collected, represented along a set of features, and

sliced along a set of classes of interest, various computational and statistical methods can be

applied. Selecting the methods to be used depends first and foremost on the specific settings of

each problem. For instance, the problem of assessing web content credibility can be cast as both

a binary classification problem as well as a regression problem, and, thus, various classification

and regression algorithms can be explored [247, 52]. Yet, if the goal is to test a certain hypothe-

sis, say, men are more active on social media than women, statistical tests and models are used

to either measure the strength of association or correlations among the variables of interest (e.g.

being a men and being active on social media), or to test casual relationships [285]. There are

other factors that guide or influence the selection of methods as well, including data quality and

quantity, available data annotations or ability to annotate, available APIs, or if the processing

can be done offline or needs to be done in an online fashion, among others.

Step 5: Evaluate and Validate. After the appropriate methods are selected, the models that

they generate are tested to see if they are accurately representing or fitting the data—this can be

seen as evaluating the models performance on the training data. Next, in many cases it is also de-

sired to build and use methods or models that generalize well to other distinct data collections—

this is particularly relevant when the goal is to solve an open-domain problem—yet, it might be

required under other settings as well. Among the alternatives to test the generalizability meth-

ods or models are the use of different data sets (e.g., collected from different social platforms,

acquired in different contexts or via different collection strategies), or performing a detailed

assessment of the variation in performance across different data set demographics.

At this step, it is also important to understand when and why the methods succeed or fail.

When the problem can be cast as a classification problem, this can mean exploring which are

the attributes that best predict a certain class. When one aims to model a given phenomenon

like the variations in the reactions of a group of people, this would be framed as what are the

attributes that best explain or account for these variations.

Step 6: Report and Interpret. Then, the last step is to report, interpret, and discuss the im-

plications of the findings. Besides reporting raw numbers, to aid the interpretation the findings

and provide further insights, one would typically consider qualitative pull-outs of data about

particular instances in which the models succeed or fail. Often, it is also important to consider

the different social cues that the same (online) social mechanisms might embed in different

contexts, and how this might have affected the methods performance. Finally, mainly for obser-

vational studies, the implications of the observations are typically discussed: e.g. how does an

observed power-law distribution of items popularity might influence a recommendation system
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design? how the polarization of users on a topic or the emergence of polarized groups affects

the information diffusion in a social network?

We note that the examples and the brief descriptions of the steps are meant to be broadly in-

dicative, and they do not necessary capture all the relevant details for all types of studies. For

an in-depth discussion on the different design decisions that are taken when aiming to describe

vs. predict a phenomenon see [285]. For a detailed discussion on how various decisions that are

taken at each of these steps can bias the final results see [32].
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4. Social Media Biases: The Case of
Climate Change

Social media is becoming more and more integrated in the distribution and consumption of

news. Yet, are social media news similar to mainstream news? To understand to what extent

social media mirrors mainstream media, this Chapter presents a comparative analysis covering

a span of 17 months and hundreds of news events that have generated spikes of coverage in

the mainstream media, social media, or both, by using a method that combines automated and

manual annotations.

We focus on climate change, a contemporary topic that is frequently present in the news through

a number of aspects, from current practices and causes (e.g. fracking, CO2 emissions) to con-

sequences and solutions (e.g., extreme weather, electric cars). The coverage that these different

aspects receive is often dependent on how they are framed—typically by mainstream media.

Yet, evidence suggests an existing gap between what the news media publishes online and what

the general public shares in social media. Through the analysis of a series of events, including

awareness campaigns, natural disasters, governmental meetings and publications, among others,

we uncover differences in terms of the triggers, actions, and news values that are prevalent in

the two types of media. For instance, we find that actions by individuals, legal actions involving

governments, and original investigative journalism feature more frequently as viral events in so-

cial media, while meetings and publications by governmental and inter-governmental agencies

tend to receive less attention in social media than they do in mainstream media.

The methodology we developed for this study can be extended to other important topics present

in the news such as immigration, pandemics or human rights issues in order to uncover coverage

differences among the two media.

43



4. Social Media Biases: The Case of Climate Change

4.1. Background

The study of anthropogenic (human induced) climate change goes back more than 100 years,1

with a scientific consensus on the topic beginning to emerge in the 1980s. By 2014 our planet

had registered the warmest year since 1880, when records began to be kept, and 14 of the 15

warmest years on record have all fallen in the first 15 years of this century.2 Climate change is an

issue with myriad impacts being felt and discussed across the globe. The increased salience of

the topic has lead to many publications in scientific journals and in the general press, campaigns

for legal reforms, and high-profile meetings and talks including the establishment of the IPCC,

the Intergovernmental Panel on Climate Change [321]. These various events and publications

vie for attention around the issue of climate change—each seeking to define and frame the

problems, causes, or potential solutions that are worthy of consideration.

The steady presence of climate change as a topic discussed in media, due to its huge potential

consequences,3 creates a valuable research opportunity for an in-depth comparative study on

how news are communicated through different types of online media, in particular mainstream

news media (MSM) and social media. Understanding these differences offers insights into how

such a complex and multi-faceted topic is comparatively covered and framed in these different

media, hinting at existing biases between them. Why might some events or actors in the climate

change discourse receive more attention in the mainstream media versus on social media, or

vice versa? What are the types of news events that receive more attention in both? Ultimately,

agenda setting serves to define the problems that are worthy of public attention [97], and we

seek to understand and compare the agenda that emerges from traditional MSM attention as

compared to the agenda that organically emerges on a social media platform.

4.1.1. Contributions

The main contribution of this Chapter is a comparison between social media and mainstream

news on climate change. While, typically, it is hard to draw absolute boundaries between top-

ics, the definition of climate change includes very specific elements of interest that allows us

to operationalize what are the relevant events (§ 4.2.1). This comparison uncovers significant

differences between triggers, actions, and news values of events covered in both types of me-

dia. For instance, mainstream news sources frequently feature extreme weather events framed

1http://en.wikipedia.org/wiki/History_of_climate_change_science, accessed 01.2015.
2http://www.huffingtonpost.com/2015/01/16/2014-hottest-year-on-record_n_6479896.html, accessed 01.2015.
3http://en.wikipedia.org/wiki/Media_coverage_of_climate_change, accessed 01.2015.
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as being a consequence of climate change, as well as high-profile government publications and

meetings. In contrast, actions by individuals, legal actions involving governments, and original

investigative journalism, feature frequently as viral events in social media.

We also introduce a methodology for comparing news agendas online. This methodology is

based on a comparison of spikes of coverage. We analyze two large-scale data sets, both cov-

ering a period of 17 months, on news (a global database of about 30 million news articles) and

social media postings (a sample of about 2 billion tweets, corresponding to 1% of all Twitter

posts). We perform automatic processing to discover terms and topics related to climate change

using an iterative procedure. Next, we automatically detect a set of candidate events which are

curated through a crowdsourced step of manual annotation. Along this process, we attempt to

keep a uniform treatment of both media under analysis. This process offers a starting point

for future comparative studies extending to other issues of global attention such as pandemics,

global terrorism, or human rights issues.

Next, we outline previous work related to this study. Sections 4.2 and 4.3 present our data pro-

cessing and annotation methodology. Section 4.4 presents the analysis of results we obtained

from this study. The last section summarizes our findings and describes future work to extend

this methodology to other domains and social media platforms; it also highlights several chal-

lenges and limitations of this study.

4.1.2. Related Work

In this study, we compare media coverage of a broad and long lived social issue: climate change.

We outline relevant work on climate change discourse (§4.1.2), and describe other comparative

studies of social media and news media (§4.1.2).

The Discourse on Climate Change

Climate change has been singled out as one of the most urgent global challenges [139], gener-

ating a great deal of interest from communication scholars in recent years. Schmidt et al. [278]

perform a transversal study regarding news media coverage of topics related to climate change

across 27 countries over a 15-year time frame. They look at the mainstream newspapers of

each country and define the relevant articles as matching a specific search query. They found

that events such as governmental meetings and report releases trigger increased conversations

on climate change, and that such debates are more intensive in carbon-dependent countries.
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Across all countries, they observe that media attention about climate change fluctuates and

peaks around specific events, which are usually of global interest. This pattern is typical of

media reporting in general, which is often characterized by topic peaks [269, 40]. In contrast

with these studies, that typically focus on a handful of news outlets, in this Chapter we analyze

the news coverage of events across global news media. Furthermore, looking at the coverage

volume alone does not reveal nuances about the actors involved in the debate or how climate

change is framed.

Molodtsova et al. [231] show that the number of tweets on climate change correlates with ex-

treme weather events, a correlation that also holds for opinion polls on climate change [86].

Along with weather events, [178] and [280] found that other major events of global or local in-

terest ignited discussions about climate change on Twitter as well, including political elections,

governmental meetings, and climate-related demonstrations. The study by Kirilenko et al. [177]

is closest to ours, as they look at both mainstream media coverage (14 news outlets) and atten-

tion patterns in Twitter. They analyze the influence of local weather anomalies on the volume of

climate change publications in mainstream media and Twitter. In contrast, we juxtapose these

media across a wide range of issues (not only weather) to understand the selection gap between

them. Given our goal of comparing climate change agendas, we look at certain types of events

that are often related to climate change, to seek an answer to which types of events are more

prominent in one media or another.

Discourse Comparisons

There is a well-documented difference between what news journalists select to publish, and

what their readers consume and share [37]. Journalists have to adhere to deontological ethics

and balance between “public interest and what the public is interested in” [300], which, in turn,

might lead to different attention patterns between social and mainstream news media. Users

tend to rely more on their social entourage to filter the news rather than on journalists [134].

Such research motivates our current study that focuses on the comparison of climate change

events that emerge in mainstream news media and on Twitter.

Comparative research [98] of Twitter communications includes studies on hashtag life-cycles [197],

usage across users of different languages [138], or food consumption [6]. In this work we study

the prominence of different types of news events as found on Twitter and in online news media

by focusing on climate-related news.
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Newspapers vs blogs.

In contrast to Twitter, comparative research has been applied much more frequently to the anal-

ysis of the coverage and framing of various issues across newspapers and/or blogs, including

religion [29], surveillance [80], and immigration [82]. Some studies have also examined and

compared the climate change discourse between clusters of blogs corresponding to climate

change acceptors and skeptics [81, 95]. Instead, the focus of this study is not the debate be-

tween acceptors and skeptics, but the ways in which different news events feature in different

media.

Other studies compare news media with blogs, showing that there is a few hours lag between the

attention peak of a meme (short sentence or phrase) in mainstream media and blogs [200]. The

media frames—the different ways of communicating about an issue—have also been studied

to gain understanding into their impact on the perceptions about news [253], as they are one

important tool to shape public opinion [76]. In this Chapter we depict news events to reveal

nuances about the factors related to spikes in coverage of an event in mainstream news media

and social media.

4.2. Data Collection and Candidate Events

In this section, we define the class of events we are interested in (§4.2.1), explain how we col-

lected news articles (§4.2.2) and social media postings (§4.2.3) and describe the event detection

framework used to generate candidate events (§4.2.4).

4.2.1. Defining “Climate Change” News

Our analysis is grounded in the current understanding of the discourse on climate change. For

the purposes of this study, by the discourse on climate change we mean the discussion around

its anthropogenic causes, adopting the definition used in the United Nations Framework for

Climate Change (emphasis added): “a change of climate which is attributed directly or indirectly

to human activity that alters the composition of the global atmosphere and which is in addition

to natural climate variability observed over comparable time periods.”4 The three elements we

have emphasized in this definition delimit the scope of the news we consider:

4http://unfccc.int/key_documents/the_convention/items/2853.php, accessed 03.2015.
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Figure 4.1.: The main steps of the analysis framework employed for this study: (a) domain data

acquisition (§4.2.2 and §4.2.3), (b) automated event discovery (§4.2.3), (c) events

curation and annotation (§4.3), and (d) data analysis (§4.4).

(i) the presence of human activity as causes,

(ii) effects in the global atmosphere, and

(iii) variations of climate.

Even with this definition, the boundary delimiting which news are related to climate change and

which are not, is by no means absolute. Articles about climate change cover a large number of

topics that vary from causes (e.g., CO2 emissions, deforestation) to consequences (e.g., melting

Arctic ice, extreme weather), current practices (e.g., fracking, coal use) and actions to stop it

(e.g., electrical cars, recycling), just to name a few. Topics such as climate-induced migration

and risks to food security, among others, are also frequently included in a long list of conse-

quences of climate change: “we will continue to see rising oceans, longer, hotter heat waves,

dangerous droughts and floods, and massive disruptions that can trigger greater migration, con-

flict, and hunger around the globe.”5

5US President Obama on climate change in the State of the Union Address: http://whitehouse.gov/sotu, accessed

01.2015.
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We consider that a news article is about climate change if it operates within the climate change

frame, in which framing is defined as a set of actions described by [186]:

(i) defining the problem,

(ii) diagnosing its causes,

(iii) making a moral judgment, or

(iv) suggesting a remedy.

We do not look for causation links between a news event and climate change, e.g. whether a

severe storm is caused by climate change or not. Instead, we examine the way in which the

storm is framed in the news, in this case, if it is described as being part of the climate change

problem.

Our data sampling attempts to have a broad coverage of events related to climate change, which

results in a set of candidate events, including several false positives. In Section 4.3 we describe

a manual annotation process by which we remove spurious events.

4.2.2. News Data Acquisition

We use news data collected by GDELT (Global Data on Events, Location, and Tone)6 and social

media data from Twitter covering the same time interval.

Mainstream Media Collection. We use GDELT, currently the largest global event catalog, to

automatically discover relevant events with high mainstream media coverage. GDELT releases

data about daily media coverage in two formats: the Event Database and the Global Knowledge

Graph (GKG).7 GDELT covers a “cross-section of all major international, national, regional,

local, and hyper-local news sources, both print and broadcast, from nearly every corner of the

globe, in both English and vernacular”8 including major international news sources.

We use GDELT’s GKG, as it provides the number and the list of news articles covering each

event from their database, to discover the list of climate-change related events that received

moderate to high media coverage between 1st April 2013 to 31st September 2014, barring

January 2014 for which Internet Archive missed Twitter data 9; this covers 17 months. However,

given that we are interested in the peak in the coverage, rather than in the number of events, for

6http://www.gdeltproject.org accessed 03.2015
7http://gdeltproject.org/about.html accessed 03.2015
8http://tm.durusau.net/?p=47505 accessed 03.2015
9To analyse Twitter data we rely on the historical archive available at Internet Archive https://archive.org .
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this study we directly use the news articles, not the events automatically mapped by GDELT;

applying a consistent methodology for detecting events.

To locate the URLs corresponding to news articles relevant to climate change, we rely on

GDELT themes and taxonomies, which are topical tags that automatically annotate events.

To systematically identify all the GDELT themes and taxonomies that are related to climate

change we first built the co-occurrence graph among them. We start with a set of relevant

themes/taxonomies containing only the ENV_CLIMATECHANGE theme (used to annotate news

articles discussing climate change and global warming in GDELT), and iteratively add themes,

respectively taxonomies, that co-occur for at least 25% of their corresponding URLs with the

ones already in the set (the relevance test). We do so until no new theme/taxonomy is added.

This results in a set of 39 themes (full list in our data release, details in Appendix A.3).

Then, we extract all the unique URLs corresponding to events annotated in GDELT with one

of these themes for each day. The resulting collection of 561,644 URLs contains an average

of about 30,000 URLs per month, with over 80% of the tags being tagged with the theme

ENV_CLIMATECHANGE.

4.2.3. Social Media Data Acquisition

Next, we use data from Twitter, a common place for news consumption and conversation, which

is also monitored by United Nations as “measuring these conversations can help reveal what

climate issues are discussed most, and where such topics are prioritized.”10

We rely on publicly available data covering about one and a half years of Twitter’s Sample

API11, which we then retrospectively sub-sample. The quality of such sub-samples is discussed

in the Chapter 5.

To locate relevant tweets we start with a set of highly-specific terms about climate change, e.g.

climatechange, global_warming [254, 178]—see Appendix A.3—which we then expand in a

snowball fashion as we did for themes/taxonomies in GDELT.

Candidate Term Selection. Given a Twitter collection obtained by sampling with a set of

keywords Kclimate—deemed relevant for climate change—we detect new relevant keywords

by (1) extracting uni-grams and bi-grams that co-occur with terms in Kclimate, and (2) rejecting

10http://unglobalpulse.net/climate/about/, accessed on 01.2015
11These tweets are collected via Twitter’s Sample API and can be found in the Internet Archive:

https://archive.org/details/twitterstream, accessed on 01.2015.
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those infrequent (occurring in less than 25 unique tweets12) or that contain only verbs, adjectives

or adverbs (e.g. verb: run, adj.: beautiful, adv.: often)—typically not specific to any domain.

When both a bi-gram and the uni-grams contained on it appear in this set, we keep only the bi-

gram (the more specific term) if it accounts for more than one third of the uni-grams’ frequency,

otherwise we keep the uni-grams. Such automated approaches tend to mis-detect less precise

terms e.g. year, park, hell, light [245], which we manually filter out. We refer to the remaining

set as the candidate terms, Kcand.

Then, using the remaining terms, we build the co-occurrence graph with the terms in Kclimate

and Kcand, and select from Kcand the terms that co-occur in at least 25% of unique tweets13

with terms from Kclimate (the relevance test). The creation of a co-occurrence sub-graph in

Twitter is done in a stream processing fashion, avoiding loading the entire data in memory. Thus,

we extract the tweets matched by terms in Kcand, mimicking the way in which Twitter does

keyword tracking on both tweet text and the URLs contained on it. Then, we test each term from

Kcand for relevance to climate change as described above. We keep repeat this process 5 times,

discovering a total of 230 terms (full list available in our data release). Qualitatively, terms

discovered in the last passes are less obviously about climate change than the terms discovered

in the initial passes. This results in a collection of 482,615 tweets, an average of about 28,000

tweets per month. Given that this is a 1% sample, our estimate is that the tweets in our sample

are representative of a larger set of around 2.8M or more tweets per month related to climate

change.14

4.2.4. Events Discovery

We analyze attention patterns in the scale of days and roughly follow the heuristic for activity

peak detection used by [197]. To identify coverage peaks we compute the time series of the

aggregated daily coverage in GDELT (respectively Twitter)—where the coverage is the number

of URLs (respectively, tweets), ci for each day di—and use a sliding window of 2m + 1 cen-

tered around day di, with m = 15—resulting in a month-long time window. Then, within each

window we juxtapose the volume on di, vi, with a baseline represented by the median volume

within the window. We declare a peak if vi deviates more than 1.5 median average deviations

12We correct term frequency to account for cases when their prominence is caused by frequent bi-grams in Kclimate.
13For this study we compute statistics over the set of unique tweets to avoid biases due to viral tweets.
14While sampling from the entire set of tweets might yield a slightly different set of terms, given that the terms

co-occurance threshold is set as a fraction of the unique tweets, we expect the variations to be small.
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(MAD) from the mean;15 and vi > tr, where tr = 50 is an arbitrary value used to filter out

low-frequency peaks which tend to be vague.

This resulted in 218 peaks represented as a 〈date, theme〉 pair for GDELT, and 428 〈date,

keyword〉 pairs in Twitter.

Detectable events. The attention patterns of Twitter keywords have been described as belong-

ing to three classes [197]: (i) continuous, i.e. having a relatively constant volume, (ii) periodic,

i.e. having spikes at regular periods, and (iii) isolated, i.e. having singular peaks. Similar obser-

vations hold for news consumption [200, 51]. As detailed by Lehmann et al. [197], the method

we discussed above will miss events that do not peak when observed at a granularity of one day,

e.g. events that build slowly over weeks or months, or smaller phenomena occurring at a finer

granularity (i.e., at the level of hours, minutes or seconds).

Events identification. We annotated each detected peak with the most likely event that trig-

gered it. This annotation often takes the form of a news headline. To assist the event identifica-

tion, we computed the frequency of uni-grams, bi-grams and tri-grams based on the text of the

corresponding URLs (respectively, tweets). Then, we manually checked the items containing

the most frequent n-grams, based on which we annotate the event. When two different sets of

frequent n-grams referred to different events (e.g., the peak was due to two concomitant events)

we add both of them; otherwise, if there were not clear sets of frequent n-grams referring to a

single event, we mark the peak as ambiguous. When two different pairs 〈date, theme/keyword〉
referring to the same event co-occured within a half of month time window we map them to a

single entry in our event list (e.g. typically a meeting or a natural hazard that lasted for several

days).

This resulted in 195 candidate events in GDELT, out of which we marked 14 as ambiguous

(possibly related to more than one news event); and 202 candidate events in Twitter, with 22

marked as ambiguous. Further, we note that many of the candidate events in Twitter were du-

plicates. For instance, a cartoon of a polar bear mending an iceberg with duct tape16 peaked

on 4 non-consecutive days in June and July 2014. We mark 12 such cases as duplicates. Thus,

after removing duplicates and ambiguous events, we remain with 181 events in GDELT, and

168 events in Twitter.

15We chose MAD for its’ robustness [201], but also experimented with standard deviation, and the deviation func-

tion used by [197], obtaining similar results.
16https://twitter.com/thereaibanksy/status/526438158742081537 among many others.

52



4.3. Events Filtering and Annotation

4.3. Events Filtering and Annotation

As noted in the previous section, some of the automatically-identified events are not related to

climate change. Two annotators, the author of the thesis and another co-author of this study,

reviewed each event to remove false positives (§4.3.1) and to classify each event according to a

taxonomy we present in this section (§4.3.2). Finally, we annotate events according to how they

are perceived in terms of news values (§4.3.3). This section describes the annotation process,

with the analysis deferred to the next section.

We use a mixture of annotation done by the same two annotators and by crowdsource workers

through the Crowdflower platform,17 selecting workers in countries having a majority of na-

tive English speakers, collecting 5 independent annotations for every element (3 for the easier

task of false positives removal), resolving disagreements by majority voting, and using a set of

unambiguous test questions provided by the author of the thesis to catch inattentive workers,

following standard recommendations from this platform.

4.3.1. False Positives Removal

The automatic data collection described above was designed to be inclusive, which has the

disadvantage that some non-climate-change events get included in both the mainstream news

and the social media collection.

Again, the two annotators review each one of these candidate events to remove false positives,

i.e. events that do not match the definition given in Section 4.2.1. Two URLs were sampled from

each event, including a Wikipedia entry or official activity/publication page when available, or

the URL of a tweet, when no URL was available. Some cases are trivial to label, for instance

when “climate change” or “global warming” are mentioned in the headline of a news article

linked from the event. In many cases, however, the reference to climate change is indirect, e.g.

a protest by Greenpeace against Procter and Gamble which is presented as an action against de-

forestation, a cause of climate change according to the manifesto inviting to this demonstration.

Out of the 181 non-ambiguous news candidates, 122 (67%) were accepted, 43 (24%) rejected

and 16 (9%) marked as borderline.18 From the 168 non-ambiguous and non-duplicate19 Twitter

17http://www.crowdflower.com/
18When the event is only marginally associated with climate chance; e.g. while Greenpeace is often involved in

climate change campaigns, the “Court Hearing: Greenpeace Activists to stay in jail” story in our event list rather

focuses on the trial outcomes.
19Duplicate processing is described in §4.2.4.
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candidates, 119 (71%) were accepted, 46 (27%) rejected and 3 (2%) marked as borderline.

Next, we contrasted our labels with annotations provided by crowdsourced annotators on the

same events. The options given to them were: coding (A) related to climate change, (B) weakly

related to climate change, (C) not related to climate change, (D) cannot judge (e.g. broken links,

not in English, or other issues).

Mapping them to our assessment of the same events (A and B correspond to accept and border-

line, C and D correspond to reject), overall, we observe a 77% agreement with the annotations

from crowdsource workers. Specifically, for news (respectively Twitter) 38.1% (resp. 48.2%)

of events were labeled as related to climate change, 19.9% (resp. 20.8%) as weakly related,

41.4% (resp. 27.4%) as not related, and 0.5% (resp. 3.6%) as not in English, etc. In general,

crowdsource annotators applied a more narrow definition of climate change events, which often

overlooked some elements of the news being analyzed. For instance, news about the develop-

ment of a “Stem cell hamburger” were accompanied by statements from the scientists, in which

they indicated that the development of this synthetic meat is motivated by reducing the number

of farm animals and hence the methane released to atmosphere that causes climate change. This

was missed by annotators who instead indicated this news was not related to climate change.

Disagreements in which crowdsource annotators labeled an event that we accepted as “not re-

lated to climate change” were further reviewed by a third annotators20. This annotator rejected a

further 30 events from that set (23 from news and 7 Twitter). The final list contains 211 events,

out of which only 25 events (about 25% from News, and 22% from Twitter) appear in both lists.

4.3.2. Event Annotations

We annotate each event according to a series of types and sub-types from previous work, as

summarized in Table 4.1. According to the literature we cite in the table, climate change cov-

erage in the news is often triggered by either a disaster, or by statements or actions of a group

of people, or in some cases an individual. In the case of disasters, we further classify them

as natural or human-induced [99]. In the case of statements and actions of people, we divide

them into the following categories of actors, following observations from previous work cited

in Table 4.1:

– Governmental organization: Any institution belonging to any government branch (executive,

legislative, judicial), or any inter-governmental agency, or any government employee acting

20Also involved in the study.
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in official capacity.

– Non-governmental organization: Any non-profit, non-governmental group, formally estab-

lished or not. We include in this category educational and research institutions, which are all

universities in our data set.

– For-profit organization: Any for-profit organization, including business and corporations but

excluding media and universities, which appear in the other categories.

– Media organization: Any media organization.

– Individual: Any individual that is not acting as a representative of any of the organization

types listed above.

We further categorize the actions of organizations or individuals as follows:

– Legal actions: Any action that is legally binding, including new executive orders and new

laws, plus any action brought to a court of law, such as lawsuits.

– Publications: Any release of a document to the public, including reports, studies, memo-

randa, infographics and cartoons.

– Meetings: Any meeting, conference, convention, etc.

– Other: Other types of actions not belonging to the categories above, in our data this corre-

sponded mostly to campaigns and brief public statements.

The annotation was done by the two annotators. We noted that an event can have more than one

trigger, and we took this into account in our annotation, associating a second trigger to some

events when deemed necessary.

Then, we again contrasted our labels with annotations provided by crowdworkers on this set of

events. Workers were provided the same categories detailed above and were asked to choose

the most likely one for each event (i.e., only one type and sub-type). Mapping our assessment

to theirs—we consider agreement if they choose one of our labels (either the first or the second

type/sub-type)—we observe a 80.1% agreement for sub-types.

4.3.3. News values

Finally, to understand why a certain event is covered prominently, we annotate the events ac-

cording to news values. News values are factors that determine the prominence with which an

event is covered in the news. There are many news values, see e.g. the lists by Harcup and

O’Neill [129] and Stovall [297]. For the purposes of this analysis, after inspecting the list of

events labeled as related to climate change, we decided to study the following six:
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Extraordinary Unpredictable High Magnitude Negative Conflictive Elite Persons
0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.2.: Distribution of confidence (a weighted measure of agreement among workers) in

annotations, with 1.0 indicating complete agreement.

– Extraordinary: the event is out of the ordinary or rare.

– Unpredictable: the event could not have been anticipated.

– High magnitude: the event has large global consequences.

– Negative: the event represents bad news.

– Conflictive: the event involves two persons/groups in antagonism.

– Related to elite persons: the event involves someone rich, powerful or famous.

We do not claim these are all the news values that matter in this case, but given limited re-

sources for annotation, bounding the number of them is necessary. This annotation is done

through crowdsourcing by using instructions that echo the list above (full text of instructions,

plus examples given to annotators for each class, are available in Appendix A.4).

We note that some of these tasks are more subjective than others, and hence elicit a lower

level of agreement, as measured by the distribution of the agreement of annotators on each task

(a value reported as the confidence on each annotation by the crowdsourcing provider). For

instance, In Figure 4.2 we see that while references to elite persons and conflictive news are

labeled with higher confidence (median=1.0), whether a news item is of high magnitude is a

judgment in which there is less agreement among annotators (median=0.6). Other news values

have in general a high level of agreement (median=0.8).

4.3.4. Examples

The full annotated data set is available for research purposes (see Section 4.5.4). Some examples

are the following:

• “Climate refugee fighting stay in New Zealand,” covered by news media and discussing

the legal actions taken by a man from Kiribati Islands and the New Zealand government

regarding an asylum request, was annotated as neutral news of low magnitude, yet ex-

traordinary and unpredictable, and depicting a conflict between two entities.
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Table 4.2.: Types and sub-types of events found in our data set. Numbers add up to more than

100% because one event may have more than one type. Distributions are signifi-

cantly different at p < 0.01.

Non For-

Disast. Gov. gov. profit Media Indiv.

News 20.2% 62.6% 32.3% 6.1% 1.0% 4.0%

Twitter 7.1% 52.7% 29.5% 5.4% 8.9% 14.3%

Disaster Actions

Hum. Nat. Legal Publ. Meet Other

News 3.0% 17.2% 19.2% 46.5% 13.1% 27.3%

Twitter 0.9% 6.3% 22.3% 37.5% 3.6% 47.3%

• “Climate change expert pleads guilty for fraud,” debated on Twitter and discussing the

fraud committed by a climate expert and former employee of the US Environmental Pro-

tection Agency, was annotated as bad news of low magnitude, yet extraordinary and

unpredictable.

• “Typhoon Haiyan,” covered by news media and debated on Twitter as an event related

to climate change leading to significant human and material loss, was annotated as bad

news of high magnitude, extraordinary and unpredictable.

4.4. Data Analysis

This section presents our observations regarding event types (§4.4.1), news values (§4.4.2) and

their interaction (§4.4.3).

4.4.1. Event types

Table 4.2 presents differences in coverage between mainstream media (MSM) and Twitter as

present in our data set. We observe significant differences in terms of coverage of disasters,

which MSM favors much more than Twitter (20% vs. 7%); in the presence of media-triggered

events—such as the publication of an investigation by a newspaper, which is an infrequent event

in terms of global news coverage but does trigger significant reactions in Twitter (1% vs. 9%);

and in the coverage of individual actions, which are given less prominence in news compared

to Twitter (4% vs. 14%).

58



4.4. Data Analysis

Legal Publ. Meet. Other Hum. Nat.

Disast.

Indiv.

Media

For profit

Non gov.

Gov.

0

5%

10%

15%

>20%
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more events in mainstream news, blue indicates more events in Twitter (best seen in color).

Figure 4.3.: Distribution of types and sub-types.

There are interesting similarities and differences between the types of actors and actions covered

in both types of media, as depicted in Figure 4.3:

– Government/inter-governmental agencies, which receive the largest amount of coverage in

both (top row of Figure 4.3(a)), are discussed in relation to a broad range of action types. The

main difference seems to be a larger coverage of publications and meetings in MSM, contrary

to coverage of legal and other types of actions which are covered more often in social media

(top row of Figure 4.3(b)).

– Non-governmental groups (and universities), are covered in both cases mostly due to publi-

cations, and also through other actions (second row of Figure 4.3(a)) such as campaigns and

public statements.

– For-profit organizations are covered mostly due to other actions (third row of Figure 4.3(b)),

which are usually advertising and announcements of projects.
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4.4. Data Analysis

Table 4.3.: Analysis in terms of news values of events covered in our mainstream news and

Twitter data sets. Asterisks in the last row highlight statistically significant differ-

ences at p < 0.01 (***), p < 0.05 (**), p < 0.10 (*).

Extraordinary Unpredictable High Magnitude

Extraord. Ordinary Unpred. Pred. High Moderate Low

News 83.8% 16.2% 82.8% 17.2% 34.3% 54.5% 11.1%

Twitter 75.9% 24.1% 80.4% 19.6% 25.0% 55.4% 19.6%

Both 79.6% 20.4% 81.5% 18.5% 29.4% 55.0% 15.6%

** **

Negative Conflictive Ref. Elite Persons

Negative Neutral Positive Conflict. No Elite No

News 43.4% 40.4% 16.2% 10.1% 89.9% 22.2% 77.8%

Twitter 34.8% 46.4% 18.9% 18.8% 81.3% 21.4% 78.6%

Both 38.9% 43.6% 17.5% 14.7% 85.3% 21.8% 78.2%

**

– Media organizations become protagonists with respect to climate change through their origi-

nal investigative reporting (fourth row of Figure 4.3(a)), yet, the number of events they create

in news is lower than in Twitter (fourth row of Figure 4.3(b)). This is because an original

investigation by one news source will rarely be quoted by many other news sources, but it

can have a significant impact in Twitter.

– Individuals are covered in both media occasionally with respect to actions (fifth row of Fig-

ure 4.3(a)), which are usually public statements. Individuals receive much more attention in

Twitter than in traditional news media (fifth row of Figure 4.3(b)).

– Disasters in general are covered more by mainstream news than by Twitter, mostly due to

their coverage of natural disasters (last row of Figure 4.3(b)). Disasters have been observed

to be a prominent subject in international news articles collected by GDELT [187].

As regards the 25 events that were prominently covered by both media, 60% were primarily

triggered by government/inter-governmental agencies (e.g. “UN Climate Summit 2014”), 24%

were campaigns or publications by non-governmental groups (e.g. “2013 Earth Day/Week”)

and 16% natural disasters (e.g. “Typhoon Haiyan”).

Overall, our results serve to quantify the thematic gap between the type of news events the

mainstream media focuses on, and the types of events that gain interest and attention on social

media [37].
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4.4.2. News values

The analysis of news values in our data, shown in Table 4.3, indicates that both media tends to

cover events that are

(i) extraordinary,

(ii) unpredictable,

(iii) of moderate and high magnitude, and

(iv) negative or neutral.

Contrary to what one could assume given the literature on news values, events involving conflict

or referencing elite persons are not the majority of news about climate change.

There are significant differences between MSM and Twitter, with relatively more coverage

given in Twitter to ordinary events in comparison to MSM. Twitter also has relatively more

coverage of events that are considered of relatively low magnitude and that involve two groups

or individuals in antagonism.

4.4.3. Event types and news values

The differences in terms of news values that we observe between MSM and social media are

largely correlated with the selection of events they cover, as can be observed by comparing both

media in the same category. This is depicted in Figure 4.4, which only includes cases when

there are at least 5 events. News values for the same type of event are often similar between

these two media, save for small differences.

While most of the reported events on climate change are extraordinary (rare), there is one ex-

ception in which more ordinary news events are the majority, which are individual actions,

featured significantly (5 events or more) on Twitter, but not in MSM. While most events are

also unpredictable, there are events announced well in advance, such as governmental and

inter-governmental meetings. These news events only feature significantly on MSM, but not

on Twitter.

As regards magnitude, disasters and publications are often the ones linked to the largest effects.

In the case of disasters, it is by their consequences: most of the disasters that are associated by

the press or Twitter to climate change are severe weather phenomena affecting large areas. In

the case of publications, this has more to do with the content of the publications, sometimes

describing existential threats to humans as a whole. The overall lower magnitude of events

62



4.5. Conclusions

covered in comparison to news may be explained by the confluence of two observations:

(1) Twitter focuses more on events with individual triggers which tend to have lower magnitude

ratings, and

(2) MSM focuses more on disaster events which tend to have higher magnitude ratings.

In terms of negativity, most news are neutral or bad. Proportionally, the most negative news are

those related to disasters and to publications.

While most news events do not involve people/groups in conflict, the cases in which they have

a more conflictive content are legal actions by governments (which usually are targeted at a

specific group, such as a mining corporation), and statements and actions by non-governmental

organizations (e.g. statements by an NGO against a certain industry).

Finally, references to elite persons (famous, rich, or powerful) are almost never included in

publications (governmental or non-governmental sources), but are present in some minority

amount in the remaining categories.

4.5. Conclusions

This section outlines our main conclusions regarding how similar social media news are to

online mainstream media news. We include a summary of the observations about the differences

in the discourse on climate change in the two media by emphasising on different types of news

they tend to focus on (§4.5.1). We, thus, show that at least for online mainstream news media,

social media, in particular Twitter, is by no means a perfect proxy. We also discuss how to

extend the methodology for comparing news coverage across media that we introduce in this

Chapter to other domains, as well as other media (§4.5.2).

4.5.1. Climate Change in Mainstream News and Social Media

From the domain and application side, there are interesting similarities between mainstream

news and social media, both in terms of the types of events they cover and the news values

of those events. However, there are also striking differences, as the activity of the two media

tends to peak around different news events, with an overlap in their peaks of attentions of about

22%–25% of the events.

63



4. Social Media Biases: The Case of Climate Change

Disasters. A key trigger of news coverage on climate change are disasters, both natural and

human-induced. Disasters covered with respect to climate change tend to be severe atmospheric

events affecting large parts of the globe. There is an important difference between online main-

stream news media and Twitter, with mainstream news media covering these events much more

than Twitter.

Publications, meetings, and legal actions. News events on climate change are usually trig-

gered by publications describing negative, global-scale consequences of climate change. News

coverage of climate change is also triggered by legal actions initiated by governments, like pass-

ing new laws and bringing lawsuits against corporations. The coverage of these events differs

in online mainstream news media and Twitter. In mainstream news media, government/inter-

governmental meetings and publications receive comparatively more attention than in Twitter,

where legal actions and official statements have a greater impact.

Individual actions. Actions by individuals appear prominently on Twitter. In about half of

the cases, these individuals do not belong to the elite: they are neither rich, nor powerful, nor

famous. Twitter indeed allows those individuals, in many cases, to generate peaks of attention

as large as the ones that are obtained by large organizations or governments.

Recommendations. For activists and advocates, publications highlighting high-impact nega-

tive effects of climate change feature prominently across both types of media. Additionally,

they also seem to be picked up by social media even when they do not include endorsements

by elite persons or references to them. For public relations or for-profit corporations, discus-

sions about lawsuits involving corporations, while not appearing so prominently in mainstream

media, circulate in social media. For media organizations, the alignment between mainstream

news and social media news on this topic is significant, but there are many gaps. It would not

be unreasonable to look at what are the news events in which there is the larger gap in favor

of social media, particularly actions and public statements by individuals, as opportunities to

disseminate information that may appeal to social media users.

4.5.2. Towards a General Method for Comparing Online Media

The method we have presented here can be extended to a variety of topics in the news. GDELT

associates news articles to hundreds of themes, enabling analysts to perform the same procedure

we have described for other themes (e.g. HEALTH_PANDEMIC, IMMIGRATION). In the case of

Twitter, any topic from which a subset of initial hashtags can be identified is amenable to the
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same event discovery process. To extend this method to other social media platforms (e.g. Red-

dit), these platforms need to minimally support data access allowing to query content through a

list of keywords—unless one has full access to a social media platform data.

Two important elements require adaptation. First, the triggers and actions should be specific to

the topic, although some overlap with the ones we have used here is expected (i.e. government,

non-government, for profit, etc.). Second, the selection of the relevant news values also requires

some familiarity with the topic, and as in this Chapter, it is hard to claim it is in any sense an

optimal selection.

Applying this event-driven methodology to the discovery of differences between mainstream

media and social media in other domains may lead to findings as interesting as the ones we

uncover here. These findings can be contrasted with those from qualitative analysis, particularly

of events that generate peaks of attentions in both media simultaneously.

4.5.3. Limitations

Finally, our approach too is not devoid of challenges and limitations, which include:

– We seek a deeper understanding of the climate change discourse, and we do not attempt to

test and validate our methodology across multiple domains—we have outlined how this can

be done in the previous section (§4.5.2).

– We do not describe patterns of consumption attention, but rather patterns of coverage, or

output attention. In other words we are not claiming that a certain issue is more read, but that

it is more written about.

– We use a period of time of 17 months, while climate change has been discussed in the news

for decades.

– We cover only one language (English), but we note that it is the language in which most

reports triggering this debate are written, including the ones by IPCC.

– We cover only one social media source (Twitter), but it is a large one and it is frequently

associated with news [188].

– While we study the coverage trends in aggregate, the users on Twitter do not represent a

monolithic community and social norms might vary across sub-populations. However, we

argue that general trends across all users still provide important insights about significant

differences among the two media.

– Both data collections have their own biases. For instance, while the global database of news

we use (GDELT) is considered a reliable source of news media coverage across the world [20],
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it may also be biased towards US news media, which are comparatively more active media

organizations [187].

– Finally, as the absolute number of viral events in both media is small in our study, it is hard to

confidently make claims about the interplay between mainstream media and social media—

e.g. when they reference or trigger each other.

4.5.4. Reproducibility & Data Release

To ensure and support the reproducibility and replicability of this case study, the data we ob-

tained from conducting it, including themes, keywords, news events, and labels, is available for

research purposes at http://crisislex.org/.
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To assess possible biases across data collections, in this Chapter, we use a systematic method-

ology to collect, sample and analyze social media data, and focus on crisis events, as the use of

social media to communicate timely information during crisis situations has become a common

practice in recent years. Particularly, the one-to-many nature of Twitter has created an oppor-

tunity for stakeholders to disseminate crisis-relevant messages, and to access vast amounts of

information they may not otherwise have. Additionally, on the application side, our goal is to

understand what affected populations, response agencies, and other stakeholders can expect—

and not expect—from these data in various types of disaster situations. Anecdotal evidence

suggests that different types of crises elicit different reactions from Twitter users, but we have

yet to see whether this is in fact the case. In this Chapter, we investigate 26 crisis situations—

including natural hazards and human-induced disasters—in a systematic manner and with a

consistent methodology. This leads to insights about the prevalence of different information

types and sources across a variety of crisis situations—e.g., the intrinsic characteristics of the

crisis situations lead to biases with respect to both information type and sources across data

collections.

5.1. Background

When a disaster occurs, time is limited and safety is in question, so people need to act quickly

with as much knowledge of the situation as possible. It is becoming more common for af-

fected populations and other stakeholders to turn to Twitter to gather information about a crisis

when decisions need to be made, and action taken. However, the millions of Twitter messages

(“tweets”) broadcast at any given time can be overwhelming and confusing, and knowing what

information to look for is often difficult.

One way to help those affected by a disaster to benefit from information on Twitter, is to provide
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an indication of what information they can expect to find. The capacity for affected popula-

tions to know what types of information they are likely to see on Twitter when particular kinds

of mass emergencies occur, can potentially help them be more efficient in their information-

seeking and decision-making processes.

To explore this idea, we collected tweets that were broadcast during 26 different crisis situations

that took place in 2012 and 2013. For each crisis, we examine the types of information that were

posted, and look at the sources of the information in each tweet. Our specific aim is to measure

the prevalence of different types of messages under different types of crisis situations.

Our results suggest that some intrinsic characteristics of the crisis situations (e.g. being in-

stantaneous or progressive) produce consistent effects on the types of information broadcast on

Twitter. The results are of interest to members of the public, emergency managers, and for-

mal response agencies, who are increasingly trying to understand how to effectively use social

media as part of their information gathering processes.

5.1.1. Related Work

We know that tweets sent during crisis situations may contain information that contributes to sit-

uational awareness [314], and though disaster situations exhibit common features across various

events [307], previous research has found that information shared on Twitter varies substan-

tially from one crisis to another [165, 236, 245]. Indeed, some variability across disasters is

expected. For instance, data from the United Nations Office for the Coordination of Human-

itarian Affairs (UN OCHA) shows that disasters in high-income countries cause significantly

more economic damage, but affect fewer people and have fewer fatal casualties, compared to

disasters in countries with low or middle incomes [240].

Comparative research is an established discipline in communication studies [98], but to date,

this method has not been extensively applied to the study of social media communications

during crises. There is little overlap in the crises examined across research groups, and no

attempt to date to apply the same methodology consistently to a large and diverse set of crises.

The literature review by Fraustino et al. [103] indicates that research on social media during

disasters “tends to examine one catastrophic event (...) and then imply that the findings are

generalizable to other disasters.”

In our attempt to fill this gap, we examine tweets that were broadcast during a broad range of

different crisis situations, and systematically apply the same methodology to the analysis of
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each event. To understand the information posted in Twitter during disasters, this methodology

is based on previous work that categorizes tweets by type (including [7, 48, 153, 245, 316]) or

by source (including [72, 79, 185, 221, 232, 293]). The taxonomy we employ in this Chapter to

categorize tweets builds upon both of these categorizations.

5.1.2. Contributions

For decision-makers and other stakeholders to be as prepared as possible, knowing what infor-

mation they are likely to gain from social media can save time and help them decide where to

direct their often limited resources. When stakeholders know what types of content to expect

(e.g., advice, support, damage reports), and which information sources will be prevalent (e.g.

news organizations, eyewitnesses, NGOs), they do not have to sift through masses of social

media posts; instead, they have a reasonable expectation of what they will find, and can then

make more informed decisions regarding their situational assessment process.

Based on our goal to ease the information overload wrought by social media during crisis situa-

tions and to gain insights about possible biases across data collections, the question we address

in this Chapter is: what are the similarities and differences in Twitter communications that take

place during different crisis events, according to specific characteristics of such events? To

answer this question, we study the prevalence of different information types and sources found

on Twitter during different types of crises, and correlate this with some of their intrinsic char-

acteristics.

5.1.3. Methodology Overview

To perform this study, we employ the following methodology:

Step 1: We determine a set of dimensions that allow us to characterize different crises: haz-

ard type, temporal development, and geographic spread. This choice is grounded on the

emergency-response literature.

Step 2: We determine a set of dimensions to characterize social media messages during a crisis:

informativeness, information type, and source. This choice is grounded on the literature

on social media use for emergency management.

Step 3: We collect Twitter data corresponding to 26 crises that took place in 2012 and 2013,

using retrospective sampling on the 1% public data stream which is publicly available in
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the Internet Archive.1

Step 4: We create, run, and evaluate a series of crowdsourcing tasks to perform content anno-

tation on approximately 1,000 messages from each of the crises. This is informed on the

crowdsourcing and emergency management literature.

Step 5: We perform a statistical analysis of the dependencies between types of crises and types

of messages to uncover both similarities and differences across data collections.

5.2. Step 1: Determining Crisis Dimensions

Given that our research question connects two domains: disaster studies, and social media con-

tent analysis, the framework we use is composed of two parts. We categorize the crises accord-

ing to a series of dimensions that characterize them. Next, we annotate tweets from each crisis

according to dimensions that characterize different types of content.

When considering how to organize our data and approach our annotation process, we turned

to dimensions used in the sociology of disaster research (p. 50 in [255]). For each crisis, we

consider hazard type (natural vs. human-induced), sub-type (e.g. meteorological, hydrological,

etc.), temporal development (instantaneous vs. progressive), and geographic spread (focalized

vs. diffused).

5.2.1. Hazard type

Hazard type is the first dimension we examine that may impact the types of contents dissemi-

nated through social media. The specific hazard types we consider are based on two taxonomies

used in Europe2 and the US,3 as well as the traditional hazard categories listed by Fischer [99].

The first distinction is between those that are natural and those that are human-induced. Sub-

categories and examples of each one are listed in Table 5.1. All sub-categories are covered by

crises analyzed in this study, with the exception of the “biological” category, which we were

unable to sufficiently account for regarding Twitter communications.

1https://archive.org/details/twitterstream
2http://www.emdat.be/classification
3http://www.ready.gov/be-informed
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Table 5.1.: Hazard categories and sub-categories.

Category Sub-category Examples

Natural

• Meteorological

• Hydrological

• Geophysical

• Climatological

• Biological (N/A)

• tornado, hurricane

• flood, landslide

• earthquake, volcano

• wildfire, heat/cold wave

• epidemic, infestation

Human-Induced
• Intentional

• Accidental

• shooting, bombing

• derailment, building

collapse

5.2.2. Temporal Development

When considering the temporal development of crises, we classify them as instantaneous (e.g.

an earthquake or a shooting), or progressive (e.g. a hurricane or a heat wave) [8, 49, 252]. As

we qualitatively coded the temporal aspects of the crises, we labeled a disaster instantaneous

if it “does not allow pre-disaster mobilization of workers or pre-impact evacuation of those in

danger,” and progressive if it is “preceded by a warning period” [8].

5.2.3. Geographic Spread

We look at the geographic spread of a crisis, and specify if it is focalized (such as a train acci-

dent) or diffused (such as a large earthquake) [8, 260]. A focalized crisis affects and mobilizes

response in a small area, while a diffused disaster impacts a large geographic area and/or mobi-

lizes national or international response.

Other Crisis Dimensions. We recognize that this list of crisis dimensions is not exhaustive.

In particular, linguistic and cultural differences have been shown to influence message content,

and the adoption of certain conventions in Twitter, e.g. [138, 257]. We also recognize that these

dimensions are not independent from one another. For instance, with the exception of war and

large-scale nuclear disasters, most human-induced crises tend to be focalized, while meteoro-

logical hazards are often diffused. Additionally, the interplay between these dimensions may

yield complex results in terms of the types of information included in Twitter messages, and

the source of that information. For example, hazard type combined with geographic spread can

affect both the public access to firsthand information about a crisis, as well as their ability to

post information about their whereabouts.
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Table 5.2.: Typologies of content used in this chapter, and their relationship to some aspects

mentioned in previous work

This work Related categories from previous work

Informativeness:
Informative informative (direct or indirect) [153]; curating or producing content [221]; con-

tribute to situational awareness [316]; situational information [282]; contextual

information to better understand the situation [290]

Not informative trolling [221]; humor [195]; off-topic [245, 263, 295]; rumor [145]; humor or

irrelevant/spam [290]

Information type:
Affected

individuals

medical emergency, people trapped, person news [48]; casualties (and damage),

people missing, found or seen [153]; reports about self [7]; fatality, injury, miss-

ing [314]; looking for missing people [263];

Infrastructure

& utilities

(casualties and) damage [153]; reports about environment [7]; built environ-

ment [314]; damaged, closures and services [145]; collapsed structure, water

shortage/sanitation, hospital/clinic services [48]; road closures and traffic condi-

tions [308];

Donations

& volunteering

donations of money, goods or services [153]; donations or volunteering [245];

requesting help, proposing relief, relief coordination [263]; donations, relief,

resources [145]; help and fundraising [42, 282]; shelter needed, food short-

age/distribution [48]; volunteer information [316]; help requests [7]

Caution

& advice

caution, advice [153]; warnings [7]; advice, warnings, preparation [245]; warn-

ing, advice, caution, preparation [316]; tips [195]; safety, preparation, status,

protocol [145]; preparedness [329]; advice [42]; advice and instructions [282];

predicting or forecasting, instructions to handle certain situations [290];

Sympathy

& emotional support

concerns and condolences [7]; gratitude, prayers [245]; emotion-related [263];

support [145]; thanks and gratitude, support [42, 282];

Other

useful information

fire line/emergency location, flood level, weather, wind, visibility [316]; smoke,

ash [308]; adjunctive and meta-discussions [282]; other informative mes-

sages [245]; information verification, explanation of particular problems [290];

Source:
Eyewitness citizen reporters, members of the community [221]; eyewitnesses [42, 79, 185,

245]; local, peripheral, personally connected [295]; local individuals [291, 316];

local perspective, on the ground reports [306]; direct experience (personal nar-

rative and eyewitness reports) [282]; direct observation, direct impact, relayed

observation [308];

Government (news organizations and) authorities [221]; government/administration [245];

police and fire services [145]; police [77]; government [42]; public institu-

tions [306]; public service agencies, flood specific agencies [295];

NGOs non-profit organizations [72, 306]; non-governmental organization [245]; faith-

based organizations [295];

Business commercial organizations [72]; enterprises [306]; for-profit corporation [245];

Media news organizations (and authorities), blogs [221]; journalists, media, and blog-

gers [72, 79]; news organization [245]; professional news reports [195]; me-

dia [42]; traditional media (print, television, radio), alternative media, freelance

journalist [306]; blogs, news-crawler bots, local, national and alternative me-

dia [295]; media sharing (news media updates, multimedia) [282];

Outsiders sympathizers [185]; distant witness [50]; remote crowd [291]; non-locals [295,

306].
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5.3. Step 2: Determining Content Dimensions

When assessing the tweets that were broadcast during each disaster event, we turned to previous

research on information broadcast via social media in disaster. We constructed a coarse-grained

categorization that covers the categories of information that are highly represented in previous

work (including [48, 153, 221, 314, 316] among others). Due to the large number of events

and messages we consider, and the limitations of using crowdsourcing workers to perform the

annotation (as opposed to experts, who would be prohibitively expensive at this scale), we for-

mulated basic information categories broad enough to be applicable to different crisis situations.

The resulting categories and the previous research represented by them, are shown in Table 5.2:

informativeness, information type, and source.

5.3.1. Informativeness

We recognize that informativeness is a subjective concept, as it depends on the person who

is asking for or receiving information. In addition, as with any communication, the context in

which the information exchange is taking place is critical to understanding its implications.

We capture this dimension following Vieweg et al. [316], by checking whether the tweet con-

tributes to better understanding the situation on the ground. Accordingly, we use the following

annotation options:

A. Related to the crisis and informative: if it contains useful information that helps understand

the crisis situation.

B. Related to the crisis, but not informative: if it refers to the crisis, but does not contain useful

information that helps understand the situation.

C. Not related to the crisis.

5.3.2. Information Type

As we closely analyzed a set of samples of messages communicated via Twitter during dis-

asters, we found that the type of content often varies substantially across hazards; a finding

corroborated by many other studies [7, 48, 153, 245, 316].

To identify a set of broad categories whose incidence (though with different degrees of occur-

rence) is to a large extent independent of event specificities, and to obtain a manageable coding
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scheme, we first identified the list of information categories used in related work studying var-

ious types of events (e.g., wildfires [316], drug wars [221], floods [42, 295], earthquake [263],

nuclear power plant [306], to name a few). Then, we proceeded with merging in a bottom-up

fashion those categories that overlap and/or are related. Finally, we gathered the remaining cat-

egories, typically accounting for information specific to each crisis or type of crisis (e.g., flood

level, weather, wind, visibility [316]), into a “catchall” category—other useful information. The

exact matching of information types present in the related work to each of the categories used

in this chapter is depicted in Table 5.2. The information types that we use are:

A. Affected individuals: deaths, injuries, missing, found, or displaced people, and/or personal

updates.

B. Infrastructure and utilities: buildings, roads, utilities/services that are damaged, interrupted,

restored or operational.

C. Donations and volunteering: needs, requests, or offers of money, blood, shelter, supplies,

and/or services by volunteers or professionals.

D. Caution and advice: warnings issued or lifted, guidance and tips.

E. Sympathy and emotional support: thoughts, prayers, gratitude, sadness, etc.

F. Other useful information not covered by any of the above categories.

5.3.3. Source

When people turn to Twitter to learn about a disaster, they are often concerned with the source

of information. Hence, we focused on content source, which may be different from tweet au-

thor; e.g. if the Twitter account of a large media organization quotes a government official, the

“source” is the government official. Sources are categorized as: primary sources (eyewitness

accounts) or secondary or tertiary sources (typically mainstream media or others engaged in

journalistic acts) [72, 79, 185, 221, 232, 293].

For the former, we chose to broaden the definition of an eyewitness account as originating from

“a person who has seen something happen and can give a first-hand description of it”4 to also

accommodate those cases when the account does not include a direct observation, yet the user

is personally impacted by the event, or it “is about a direct observation or impact of a person

who is not the micro-blogger” [308]—typically relaying the observations of friends or family.

In the latter case, we can find several organizations who often aggregate information about a

crisis, including business, governmental, and non-governmental sources:

4http://www.oxforddictionaries.com/definition/english/eyewitness
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5. Data Collection Biases: The Case of Crisis Data

A. Eyewitness: information originating from eyewitnesses of the event or of response/recovery

operations, or from their family, friends, neighbors, etc.

B. Government: information originating from the local or national administration.

C. Non-governmental organization: information originating from NGOs.

D. Business: information originating from for-profit business (except news organizations).

E. Traditional and/or Internet media: information coming from sources such as TV, radio, news

organizations, web blogs, or journalists.

F. Outsiders: information originating from individuals that are not personally involved/affected

by the event.

5.4. Step 3: Data Collection

5.4.1. List of Events

Table 5.3 shows our data sets, which were made available for research purposes (see Sec-

tion 5.8.2). They correspond to a set of 26 events during 2012 and 2013, and which spawned

significant activity on Twitter. Table 5.3 also includes crisis dimensions of hazard type, de-

velopment, and spread (we consider the Singapore haze to be partially human-induced due to

intentional fires to clear land). We note that in our data set, all human-induced crises are fo-

calized and instantaneous, while all natural hazards are diffused, but may be instantaneous or

progressive.

To obtain our list of events, we started with a set of disasters compiled mainly from Wikipedia.5

We then filtered it by choosing events that had at least 100,000 tweets associated with them—

which is reflected by at least 1,000 tweets in the 1% public data stream we used.

Floods are the most frequent type of natural hazard in our data, and also the natural hazard that

affects the most people in the world. According to data from the United Nations for the 2002–

2011 period, an average of 116 million people were affected by a flood every year, followed

by 72 million people a year affected by drought, 40 million by storms, 9 million by extreme

temperatures, and 8 million by earthquakes [240].

5From the list of significant events per month, e.g. for January 2013 we consulted

http://en.wikipedia.org/wiki/January_2013
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5.4.2. Data Sampling

Our data collection method is shaped by limitations to data access through Twitter, and is based

on first collecting a base data sample and then retrospectively sub-sampling it. The base data

sample was obtained by constantly monitoring Twitter’s public stream via Twitter’s Sample

API, which consists of a sample of approximately 1% of all tweets6 and it is accessible via

Internet Archive7, allowing full reproducibility of this work. In the 2012-2013 period, this col-

lection contains on average about 132 million tweets (amounting to 38 GB of compressed data)

per month. The quality of Twitter data samples acquired via the publicly available APIs that

offer limited access to the full Twitter stream has been studied extensively, to understand the

nature of the biases of such data samples [111, 120, 160, 234, 235]. Yet, while [235] have shown

biases with respect to hashtag and topic prevalence in the Streaming API (which we do not use

in this study), [234] shows that the data obtained via the Sample API closely resemble the ran-

dom samples over the full Twitter stream, which corroborates the specifications of this API.

Additionally, given the daily volume of tweets “the 1% endpoint would provide a representa-

tive and high resolution sample with a maximum margin of error of 0.06 at a confidence level

of 99%, making the study of even relatively small subpopulations within that sample a realistic

option” [111].

The sub-samples are obtained by running keyword searches over the base data—keyword searches

that mimic the way in which Twitter does keyword tracking to obtain a sample of the data that

one can obtain in real time.8 An advantage of this retrospective sampling method is that one can

capture the entire period of the event, which is not the case for other collections built during the

disasters, which generally lack the first minutes or hours of the event.

Keywords were selected following standard practices commonly used for this type of data col-

lection by practitioners [42, 151, 245, 306], and typically include hashtags or terms that pair

the canonical name of the disaster with proper names of the affected locations (e.g., Manila

floods, #newyork derailment), the proper names of the meteorological phenomena (e.g., Hur-

ricane Sandy), or, at times, hashtags promoted by governments, response agencies, or news

media. These terms can be either in English or in the language of the population affected by the

disaster. In Chapter 6 we show that this method produces a sample of messages whose distribu-

tion of information categories closely resembles the sampling by other methods e.g. geofencing,

which samples all tweets from users in the affected area.

6https://dev.twitter.com/docs/api/1.1/get/statuses/sample
7https://archive.org/details/twitterstream
8https://dev.twitter.com/docs/streaming-apis/parameters

#track
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To identify the keywords/hashtags used during each event, the author of the thesis used a search

engine to lookup for “Hashtags 〈Event Name〉.” The search results often included news articles

discussing the social media use during the searched event,9 resources from NGOs using social

media for crisis management,10 Internet media platforms,11 governmental resources on social

media use12 or research papers [42, 245]. Using these resources, we built an initial list of hash-

tags/keywords, which we further validated and iteratively improved by manually searching for

them on Twitter. In those cases in which the hashtag/keyword had been used for other purposes,

we also looked for the combination of the hashtag/keyword, and the event name. When other

keywords frequently appear with those already on our list, we also searched for them in Twit-

ter. If there were at least a few instances in which they appeared in relevant tweets without the

other keywords, we added them to the list—essentially simulating what a practitioner can do

at the time of the event. The size of the resulting keywords lists vary, yet our results in Chap-

ter 6 suggest that across events keywords lists of various sizes retrieve collections which exhibit

comparable representativeness with respect to a reference sample. Specifically, in Chapter 6,

we see that for all the analyzed events, although the keywords list varies from 4 to 36 terms

and that the keyword-based collections tend to bias the collections towards e.g. media reports,

the representativeness with respect to a reference sample is similar across the keyword-based

collections corresponding to different events.

For the instantaneous hazards we start the collection from the moment when the event happen,

while for the progressive hazards we start from the moment the hazard was detected (e.g., when

a storm formed for a hurricane, or when the first fires were detected for wildfires). The volume

of tweets in each collection decreases after onset, but we continue collecting data until that

volume stabilizes to a low value (specifically, when the standard deviation of the daily number

of tweets becomes less than 5).

As a post-processing step, we remove very short tweets (i.e. those made up of 3 tokens or

less), as they are in general hard to classify and rarely contain any useful information. We do

not remove near-duplicates or re-tweets (RTs) because we are interested in the extent to which

people repeat and pass along existing messages.

9http://mashable.com/2012/06/29/colorado-wildfire-social-media/, http://www.techinasia.com/singapore-haze-

infographic/ and others.
10http://wiki.crisiscommons.eu/wiki/Crises, http://crisiswiki.org/
11http://twitchy.com/2014/07/07/earthquake-hits-southern-mexico-and-guatemala-fatalities-damage-reported-

pics/, https://storify.com/ABC13Houston/plant-explosion-in-west-texas
12http://www.gov.ph/2013/11/09/online-efforts-for-typhoon-yolanda/
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5.5. Step 4: Crowdsourced Data Annotation

We employed crowdsource workers to perform manual annotation of our data sets in April and

May 2014.13 The workers were provided with detailed instructions and examples of correctly

labeled tweets, so they could successfully complete the annotation task.

5.5.1. Task Description

Below are the instructions given during the annotation phase to crowdsource workers. “You,” in

the task description refers to the crowdsourcing worker. The underlined parts, and the examples,

changed for each crisis.

M1. Informativeness. The instructions used for this annotation task are shown below, and

include examples for each class.

Categorize tweets posted during the 2013 Colorado floods. Please read them carefully, fol-

lowing links as necessary, and categorize them as:

A. Related to the floods and informative: if it contains useful information that helps you

understand the situation:

– “RT @NWSBoulder Significant flooding at the Justice Center in #boulderflood”

– “Flash floods wash away homes, kill at least one near Boulder via @NBCnews”

B. Related to the floods, but not informative: if it refers to the crisis, but does not contain

useful information that helps you understand the situation:

– “Pray for Boulder, Colorado #boulderflood”

C. Not related to the floods:

– “#COstorm you are a funny guy lol”

D. Not applicable; too short; not readable; or other issues.

M2. Information Type. Instructions and examples:

Categorize tweets posted during the 2012 Colorado wildfires. Please read them carefully,

following links as necessary, and categorize as:

A. Affected individuals: information about deaths, injuries, missing, trapped, found or dis-

placed people, including personal updates about oneself, family, or others.

– “Up to 100,000 people face evacuation in Colorado”

B. Infrastructure and utilities: information about buildings, roads, utilities/services that are

damaged, interrupted, restored or operational.

13We employed workers through the crowdsourcing platform CrowdFlower: http://crowdflower.com/
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– “Officials working the #HighParkFire confirmed that several roads are closed”

C. Donations and volunteering: information about needs, requests, queries or offers of

money, blood, shelter, supplies (e.g., food, water, clothing, medical supplies) and/or ser-

vices by volunteers or professionals.

– “#Offer Storage Space http://t.co/... #COwildfire”

D. Caution and advice: information about warnings issued or lifted, guidance and tips.

– Wildfire warnings issued for six counties Sunday - http://t.co/...”

E. Sympathy and emotional support: thoughts, prayers, gratitude, sadness, etc.

– “Pray for Boulder #COwildfire”

F. Other useful information NOT covered by any of the above categories.

– “To track fire activity in CO, check this site @inciweb Colorado Incidents http://t.co/...”

G. Not applicable; not readable;not related to the crisis.

M3. Source. Instructions and examples:

Categorize tweets posted during the 2013 Queensland floods (Australia). Please read them

carefully, following links as necessary, and indicate the most likely source of information

for them as:

A. Eyewitness: if the information originates from eyewitnesses to the event or to response/recovery

operations, or from their family, friends, neighbors, etc. :

– “Just found out my mum is trapped at home, no water, no power, tree’s down across roads

out of her property near glasshouse mtns”

– “Outside sounds like it is going to shatter my bedroom windows any sec now #bigwet

#qld”

B. Government: if the information originates from national, regional or local government

agencies, police, hospitals, and/or military.

– “PRT @theqldpremier: UPDATE SCHOOL CLOSURES: An updated school closures

list is available now at http://t.co/...”

C. Non-government: if the information originates from non-governmental and not for profit

organizations such as RedCross, UN, UNICEF, etc.

– “RT @RedCrossAU: Everyone affected by #qldfloods, let people know you’re safe:

http://t.co/...”

D. Businesses: if the information originates from for-profit business or corporations such

as Starbucks, Walmart, etc.

– “RT @starbucks: With many partners impacted by OLD floods, consider making (or in-

creasing) donations”

E. Traditional and/or Internet news or blogs: if the information originates from television

channels, radio channels, newspapers, websites or blogs such as CNN, KODA, New York

Times, etc.

– “RT @ABCNews24: #QLDfloods watch: Authorities are preparing for tornadoes in

southeast Queensland.”
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F. Outsiders: if the information originates from individuals that have NO acquaintances

affected by the event, nor are they associate with any organization.

– “RT @TheBushVerandah: Just heard a farmer had to shoot approx 100 sows at mundub-

bera ... In preference to them drowning”

G. Not applicable; not readable; not related to the crisis.

5.5.2. Task Characteristics

For all annotation tasks, we provide examples both in English and the language most com-

monly used to communicate about the event (if there was a common language used other than

English.) Regarding worker selection, the platform we used for crowdsourcing allows us to se-

lect workers by country (but not at a sub-country level), so we specified that workers must be

from the country where the event took place. In a few cases when there were not enough work-

ers to perform the task, we also included workers from neighboring countries having the same

official language. We selected workers in this way to ensure that they understand the tweets

posted by individuals local to the event, and that they would be more likely to be able to un-

derstand dialects, references to regional and/or local places, and overall be versed in the culture

of the area in which the event took place. Additionally, following standard guidelines from this

crowdsourcing platform, 20 to 30 tweets per crisis and task were classified by the author of this

thesis. We consider as untrusted all workers whose assessments differ significantly from ours

on these tweets (less than 70% of agreement), otherwise we consider them as trusted.

Workers were presented with the tweet text, including any links (which they were invited to

follow), and then asked to choose a single category that best matched the content of the tweet.

To avoid potential ethical concerns on behalf of Twitter users who are likely unaware that their

tweets are being collected and analyzed, workers did not have access to the author username,

nor the time at which the tweet was sent. In addition, we avoid possible privacy violations by

not displaying the username nor the profile picture of persons affected by a given disaster. This

practice follows customary procedures used for using crowdsourced annotation of text messages

for both information type [17, 52, 153, 245] and information source [79, 245].

Trusted workers took from 10 to 12 seconds to label each tweet (in terms of interquartile mean,

which is the figure reported by the crowdsourcing platform). We collect labels from at least 3

different trusted workers per tweet and task, and determine the final label of the tweet by simple

majority.
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About 15-20 trusted workers participated in each classification step (i.e. a set of 1,000 tweets

from a single event and with a single question M1, M2, or M3), with the bulk of the work

being done by about 10 of them in each case—with no worker labeling more than 300 items

in a classification task, a limit set by us following recommendations from the crowdsourcing

provider. The total amount paid to the crowdsourcing platform for the 3 classification tasks was

approximately $35 (USD) per event. Payments to specific individual workers depend on how

many tasks they performed and on their agreement with the test questions, following an internal

procedure of the crowdsourcing provider.

The first classification task is to identify tweets which are related to a crisis. A tweet may contain

a crisis’ keywords but be unrelated to it, as some keywords may be quite general, and refer to

any number of topics other than the disaster situation. In addition, unscrupulous spammers

sometimes exploit the popularity of a crisis hashtag to post promotional content [35]. As a

result, the first labeling phase (M1) also has a data cleaning role. For each event we label a

set of 1,000 tweets selected uniformly at random. We imposed a minimum threshold of 900

crisis-related tweets per crisis, and in the cases where it was necessary (9 out of 26 crises), we

continued labeling random samples of tweets until passing the threshold. Next, we kept only the

tweets that were related to the crisis (independently of whether they were deemed informative

or not), and classified them with respect to information types (M2) and sources (M3).

5.5.3. Task Evaluation

Tweet classification is a subjective process, especially when performed at a large scale, and

with a focus on tweet content. To evaluate to what extent subjectivity affects our results, we

performed the following experiment: Two annotators14 independently labeled 200 tweets sam-

pled uniformly at random from all the crises. They classified tweets according to information

types and sources, by looking at the content of the tweets as displayed in the Twitter platform,

including conversations (if any), and looking at links in the tweets, and user profile information

from its authors. We also note that the annotators had background information about each of

the events.

We measure inter-assessor agreement with Cohen’s Kappa, resulting in κ = 0.80 for infor-

mation type (95% confidence interval CI: [0.73, 0.87]) and κ = 0.73 for source (95% CI:

[0.64, 0.81]). Customarily, values in this range indicate substantial agreement.

14The author of the thesis and another co-author of this study.
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Next, we take all tweets in which both annotators agree and compare their joint label with

those provided by crowdsource workers. The results are κ = 0.81 (95% CI: [0.73, 0.88]) for

information type and κ = 0.72 for source (95% CI: [0.62, 0.83]). Again, these values reflect

substantial agreement. The individual agreement of annotators with workers (which includes

cases in which the labels given by annotators do not agree) is lower but still substantial (κ =

0.69 and κ = 0.74 for information type, κ = 0.57 and κ = 0.63 for source).

The conclusion is similar to that of previous work using crowdsourcing labeling (e.g. [79, 288]),

crowdsource workers collectively provide reliable labels for social media annotation tasks, at a

volume that would be very costly to achieve by other means (in our case, 26 × 1, 000 × 3 =

78, 000 labels).

This experiment also allows us to evaluate the biases of crowdsourcing labeling. For informa-

tion type, in 15% of the cases the crowdsourced label does not correspond to the one given

by the two annotators (among the annotators this discrepancy is 16%). The most common er-

ror of crowdsourcing workers is labeling “Caution and Advice” messages as either “Donations

and Volunteering” or “Other Useful Information”—e.g. messages advicing where the affected

population can send information or submit rescue requests to govermental agencies were con-

fused with requests for help from volunteers and NGOs. For information source, in 17% of the

cases the crowdsourced label did not agree with the one of the annotators (among annotators

this discrepancy is 18%). The most common error was labeling “Eyewitness” as “Outsiders” or

“Media.” This means that in the analysis, we have to consider that “Caution and Advice” and

“Eyewitness” may be underrepresented categories, while the other categories we mentioned

may be overrepresented. The extent of the total under-representation/over-representation across

all categories, however, is about 15%-17%, and more importantly, is not larger than the discrep-

ancy among the two annotators who performed this evaluation.

5.6. Step 5: Data Analysis

The final step is to perform an analysis of the data annotated by the crowdsourcing workers. We

begin by presenting results about the overall distribution of content types across crises, which

we connect to the crisis dimensions by mining association rules. Then we consider temporal

aspects, as well as the interplay between content dimensions.

Finally, we show that while substantial variability exists, similar crises tend to have a similar

distribution of message types (§5.6.6). Though we make no claims that these 26 crises are
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representative of every event of every type we consider, we do note patterns and consistencies

in the proportion of different messages, and present potential explanations about them, to serve

as foundations for future explorations.

5.6.1. Content Types vs. Crisis Dimensions

We first present our results regarding relationships between crisis dimensions and the prevalence

of categories of information found in tweets.

Informativeness

The proportion of messages in each collection that were found to be about the crisis at hand (i.e.

classified in the first two categories of M1) was on average 89% (min. 64%, max. 100%). In this

case, one of the most significant factors is whether the keywords/hashtags adopted by people

tweeting about the crisis are specific to the event, or were used for other purposes. For instance,

#yolandaph was specifically used for Typhoon Yolanda, while #dhaka (the name of the

capital of Bangladesh) was used after the Savar building collapse, but also for other purposes.

Among these messages, the proportion of informative messages (i.e. those in the first cate-

gory of M1) was on average 69% (min. 44%, max. 92%). Most of the messages considered

“not informative” contained expressions of sympathy and emotional support (e.g. “thoughts

and prayers”).

Information types

Figure 5.1(a) shows the distribution of information types found in the tweets related to each

crisis. Below, we sort the categories in decreasing order of average prevalence, noting the (wide)

range on the proportion of each type.

• Other useful information: 32% on average (min. 7%, max. 59%). This “catchall” cate-

gory is the largest among the information types. An analyst interested exclusively in the

remaining categories can skip these messages on the initial pass of analysis. We note

that the events in which this category was the least prevalent (i.e., the other categories

accounted for more than 80% of the messages) were all diffused. While we do not claim

that all, or even most, diffused events will have fewer-than-average amounts of “other
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useful information" tweets, it is potentially useful to know that this type of tweets is not

prevalent in the diffused events we studied.

The information captured by the “other useful information” category varies significantly

across events. For instance, in the Boston bombings and LA Airport shootings in 2013,

there are updates about the investigation and suspects (e.g. “Boston bomber, Dzhokhar

Tsarnaev has finally been arrested and is in custody.”); in the West Texas explosion and

the Spain train crash, we find details about the accidents and the follow-up inquiry (e.g.

“’black box’ on Spain train that crashed, killing 79, shows conductor was on phone,

traveling nearly twice speed limit”); in earthquakes, we find seismological details (e.g.

“5.1 earthquake, 54km SW of Champerico, Guatemala. Nov 7 16:42 at epicenter depth

35km”).

• Sympathy and emotional support: 20% on average (min. 3%, max. 52%). Tweets that

express sympathy are present in all the events we examined. The 4 crises in which the

messages in this category were more prevalent (above 40%) were all instantaneous dis-

asters. Again, we make no hard-and-fast claims about all instantaneous disasters, but

this finding leads us to conjecture that people are more likely to offer sympathy when

events are not predicted, take people by surprise, and may cause additional distress due

to their unforeseen occurrence (e.g. “Wow can’t believe what just happened at the Boston

Marathon. Praying for everyone down there”).

• Affected individuals: 20% on average (min. 5%, max. 57%). The 5 crises with the largest

proportion of this type of information (28%–57%) were human-induced, focalized, and

instantaneous. These 5 events can also be viewed as particularly emotionally shocking.

They resulted in casualties, but a small enough number of casualties to generate many

reports regarding individuals who lost their lives, suffered injuries, or were missing or

trapped (e.g. “at least 2 have died in train derailment in the Bronx. #MetroNorth”).

• Donations and volunteering: 10% on average (min. 0%, max. 44%). The number of

tweets describing needs or offers of goods and services in each event varies greatly; some

events have little or no mention of them (e.g. Singapore Haze), while for others, this is one

of the largest information categories. In our data, tweets about donations and volunteer-

ing were more prevalent in Typhoon Yolanda in 2013 (44%) and in the floods in Sardinia,

Colorado, Alberta, and Manila in 2013, and in the Philippines in 2012 (16%–38%)—

tweet examples include “We’ve opened residences to those evacuated due to #yycflood.

If you need lodging visit an #ABemerg Response centre” or “#RescuePH please help the

residents of 16 purity st. Remmanville bicutan. They need food and water. ” In contrast,
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they were 10% or less for all analyzed crises that were human-induced, focalized, and

instantaneous.

• Caution and advice: 10% on average (min. 0%, max. 34%). In instantaneous crises, there

is unsurprisingly little information of this type (0%–8%), as these events are often not

predicted and only post-impact advice can be present. The only exceptions in our data

are the Italy earthquakes in 2012 (17%)—in which the collection covers two consecutive

earthquakes plus a number of significant aftershocks which happened over an interval

of less than 10 days, and Costa Rica earthquake in 2012 (34%)—when tsunami alerts

were issued across Central America and parts of South America including even distant

countries like Chile. Apart from these two events, the events with the most tweets that

include information about caution and advice are caused by diffused natural hazards,

and the 5 with the highest fraction from this set are all progressive (22%–31%). Tweet

examples include “yellow advisory for Metro Manila. Moderate-heavy rains in next 3

hours, possible floods in low-lying areas” or “The Burnett Highway, six kilometres south

of Mt Morgan has water over it. Proceed with caution.”

Further, barring the meteor that fell in Russia in 2013, we can see a clear separation be-

tween human-induced hazards and natural hazards: all human induced events have less

caution and advice tweets (0%–3%) than all the events due to natural hazards (4%–31%).

The meteor was a rare event that felt like a bomb whose shock wave shattered windows

and damaged thousands of buildings, remaining undetected before its atmospheric en-

try.15

• Infrastructure and utilities: 7% on average (min. 0%, max. 22%). The crises where this

type of information represents more than 10% of tweets were the Queensland, Alberta,

and Colorado floods of 2013, and the Venezuela refinery explosion in 2012. In flood

situations, it is common for public institutions and roads to be closed and for electricity

and water supplies to be cut (e.g. “#cuboulder campus will also be closed tomorrow (9/13)

due to #boulderflood” or “@XcelEnergyCO reports most electric customers back on line,

but 2000 gas customers still out, half in Boulder County”). In the case of the refinery

explosion, which was an important industrial site, many living in the area were suddenly

without electricity due to the massive impact of the discharge. We note that even when

ability of affected populations to tweet might be affected by e.g. power outages, other

actors (e.g. media, governmental agencies or NGOs) also tend to tweet more frequently

information about infrastructure.

15http://en.wikipedia.org/wiki/Chelyabinsk_meteor
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Sources

In Figure 5.1(b), we see the distribution of tweet sources, and we observe the following:

• Traditional and/or Internet media: 42% on average (min. 18%, max. 77%). Regardless of

the event, traditional and Internet media have a large presence on Twitter, in many cases

more than 30% of the tweets. The 6 crises with the highest fraction of tweets coming

from a media source (54%–76%) are instantaneous, which typically make the “break-

ing news” in the media (e.g. “@Reuters: BREAKING NEWS: 6.3 magnitude earthquake

strikes northwest of Bologna, Italy: USGS” from Reuters during the earthquakes in Italy,

or “BREAKING: Reports of shots fired at LAX Airport, says senior government official.

Stay with @msnbc for the latest.” during LA airport shooting).

• Outsiders: 38% on average (min. 3%, max. 65%). Depending on the event, the number of

“outsiders” can vary. This was in general about 18% or more, with the exception of the

Singapore haze in 2013 that had only 3% of tweets from outsiders. The Singapore haze

was an event that strongly disrupted the city, but did not result in life-threatening injuries

or deaths. Examples of tweets from outsiders include reactions to the news e.g. “Crazy

news to hear a helicopter has crashed in Glasgow city centre, can only hope everyone in-

volved is ok!” or actions taken to help those affected by the disaster e.g. “I just donated to

the @britishredcross #Typhoon Haiyan Appeal. Please donate at http://link_donations”

• Eyewitness accounts: 9% on average (min. 0%, max. 54%). In general, we find a larger

proportion of eyewitness accounts during diffused disasters caused by natural hazards.

The 12 events with the highest percentage of eyewitness accounts are all diffused (6%–

54%) and the top 6 are also progressive (13%–54%). Tweet examples include observa-

tions “View from my desk earlier #sydneyfires #smoke #scary #city #orangeApocalypse

http://link_instagram” or “never ending rains hounds us in 3 days strait now. Flood wa-

ters r inside our house.”

• Government: 5% on average (min. 1%, max. 13%). A relatively small fraction of tweets

include information sourced by government officials and agencies—only for two of the

crises we analyze this exceeds 10%. We surmise that this is because governments must

verify information before they broadcast it, which takes considerable time [144]. There-

fore, government accounts may not have the most up-to-date information in crisis situa-

tions. The 7 events with the highest percentage of tweets from governmental agencies are

due to natural-hazards, progressive and diffused (7%-13%), which are the cases when the

governments typically intervene to issue or lift warnings or alerts: e.g. “Total Fire Bans
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will be in place in a number of areas tomorrow including Greater Sydney, the Greater

Hunter, and the Illawarra” from the New South Wales rural fire service in Australia, or

“Maps of the Sunnyside and Bowness evacuations can be found here: http://link_maps ”

from City of Calgary.

• NGOs: 4% on average (min. 0%, max. 17%). Like governments, NGOs are also careful

to broadcast only verified information. In the human-induced crises we studied there is

little NGO activity on Twitter (≈ 4% or less). The highest levels of NGO tweets are seen

in natural disasters and all those in which the fraction of such tweets was 6% or more

are typhoons and floods (e.g. “Filipinos abroad may donate to the #YolandaPH fund via

Paypal through PDRF’s #BrickByBrick Program” during Typhoon Yolanda), which are

diffused events typically affecting large areas and populations.

• Business: 2% on average (min. 0%, max. 9%). For the most part, we do not see a large

amount of tweet activity from businesses in the disaster situations we studied. The pro-

portion is below 5% for all crises except the Alberta floods in 2013 with 9% of tweets

coming from businesses. Furthermore, with only one exception—the Glasgow helicopter

crash when e.g. a taxi company offered free rides to hospital to the victims families: “any-

one with loved ones in hospital from #Clutha and struggling for transport to visit, we’ll

provide free taxis”—the crises with 3% or more tweets from business were diffused.

5.6.2. Association Rules

To systematically search for relationships between the characteristics of crises and the messages

on Twitter, we applied an association-rules mining method [61]. To err in the side of caution,

we report only the automatically-discovered association rules that are valid for more than 20

out of the 26 crises. To apply this method to numerical data, each category in the information

types and sources was divided into two classes: above the median, and below the median.

For information types, we found one rule that is valid for 24 out of 26 of the crises: when

the geographical spread is diffused, the proportion of caution and advice tweets is above the

median, and when it is focalized, the proportion of caution and advice tweets is below the

median. For sources, we found one rule that is valid for 21 out of 26 of the crises: human-

induced accidental events tend to have a number of eyewitness tweets below the median, in

comparison with intentional and natural hazards.
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Both rules are possibly related to different levels of access to the area affected by the event and

to its surroundings.

5.6.3. Content Redundancy

We next look at content redundancy. Heuristically, we consider two tweets to be near-duplicates

if their longest common subsequence was 75% or more of the length of the shortest tweet.

Among the sources of information, messages originating from non-governmental organizations

and government sources tended to show more redundancy, with the top 3 messages (and their

near-duplicates) accounting for ≈20%-22% of the tweets. Among information types, messages

of caution and advice, and those containing information about infrastructure and utilities, were

the most repeated ones, with the top 3 messages (and their near-duplicates) comprising ≈12-

14% of the tweets.

5.6.4. Types and Sources

Some information types are more frequently associated with particular sources, as shown in

Figure 5.2, in which each 〈type, source〉 cell depicts the probability that a tweet has that spe-

cific combination of information type and source. NGOs and business are more frequently the

source of tweets related to donations and volunteering, mostly to ask for resources and request

volunteer work (NGOs), or to announce free or discounted goods or services for those affected

by a disaster (businesses).

Tweets from governments are often messages of caution and advice, such as tornado alerts or

evacuation orders (e.g. “#HighParkFire evacuation orders issued for Pingree Park area” from

the Larimer County Sheriff’s Office)—which agrees with observations in [329] where “pre-

paredness” is the larger category used by government communications. Instead, eyewitness

tweets focus on affected individuals (e.g. “Feels strange being evacuated from the 33rd floor.

Trust me, if the water gets there we’re all in big trouble. #yyc”). Both government and eyewit-

ness tweets also frequently include a variety of messages that belong to the “other useful infor-

mation” category (e.g. “Clarifying a rumour for #yyc. There are NO zoo animals being sheltered

at the Courts. #yycflood” from police, or “Sunset in my hometown Fort Collins. We can see the

smoke from High Park Fire.” from an eyewitness). Outsider messages are predominantly about

sympathy and support (e.g. “prayers go out to the people in Russia! #RussianMeteor”).

Finally, tweets from traditional and Internet media offer a variety of information types including
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Figure 5.2.: Average distribution of tweets across crises into combinations of information types

(rows) and sources (columns). Rows and columns are sorted by total frequency,

starting on the bottom-left corner. The cells in this figure add up to 100%.

information about affected individuals, and messages of caution and advice. Media are also the

most prominent source of information regarding infrastructure and utilities.

5.6.5. Temporal Aspects

We study how the volume of different categories of messages evolves over time, as shown in Ta-

bles A.4 and A.5 in Appendix A.5. We separated crises according to their temporal development

(instantaneous vs. progressive), depicting using “spark lines” the total volume of messages over

time, and the total volume of messages in each information type and source.16 This analysis fo-

cuses on the differences between the average timestamps of messages in different information

categories.

In terms of information types, the messages that are likely to arrive first are those of caution and

advice, and sympathy and support, roughly in the first 12–24 hours after the peak of the crisis.

This is particularly evident in instantaneous crises. Then, messages about affected individuals

and infrastructure are most frequent. Typically, the last messages to appear are those related to

donations and volunteering. Interestingly, this follows the progression in the stages of a crisis

16Each point in the spark line corresponds to a calendar day, which explains why in some instantaneous crises the

overall curve goes up at the beginning (when the crisis occurs at night).
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from emergency response to early recovery actions [307].

In terms of sources, there are differences depending on the type of temporal development. In in-

stantaneous crises, outsiders, media and NGO messages tend to appear early, with other sources

following (the temporal position of eyewitness messages varies substantially depending on cri-

sis type). On the other hand, during progressive crises, eyewitness and government messages

are the ones more likely to appear early, mostly to warn and advice those in the affected areas,

while NGO messages appear relatively late. In addition, there is an interesting temporal com-

plementarity between messages from governments and NGOs that merits to be studied in depth

in future work.

5.6.6. Crisis Similarity

In further seeking links between disaster characteristics and tweet content and source, we apply

an unsupervised method—specifically, we use hierarchical agglomerative clustering. Perform-

ing this clustering uncovered groups of crises that have similar content distribution. Given that

we compare probability distributions, to measure the similarity between two crisis events we use

Bhattacharyya distance (for two discrete distributions p and q this is − ln(
∑

c∈C
√

p(c)q(c))

where C is the set of all classes) which quantifies the overlap between two statistical samples.

To combine clusters of crises, we used complete-linkage clustering, which merges those clusters

for which the distance between their furthest elements is the smallest.

Figure 5.3(a) shows the resulting dendrogram when the clustering is done according to the

distribution of information types. We see two large clusters: first, the cluster on the bottom is

dominated by human-induced crises, while in the one on the top there are only natural hazards.

This indicates that, despite the significant variations we have shown, human-induced crises are

more similar to each other in terms of the types of information disseminated through Twitter

than to natural hazards.

Second, events also cluster depending on how they developed. The cluster at the bottom includes

instantaneous events, with one exception: the Colorado wildfires in 2012. This exception may

be due to the nature of this particular fire. The combination of heat, drought conditions, and high

winds caused the fire to quickly develop, and it claimed 350 houses in just over 12 hours. The

cluster on the top includes progressive disasters, with two outliers: Italy earthquakes in 2012—

a sequence of earthquakes and aftershocks—and the Costa Rica earthquake in 2012—during

which a Caribbean-wide tsunami watch was issued, resulting in a large volume of caution and

advice messages that are typically more prominent in progressive crises.
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(a) Clusters by information type.
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(b) Clusters by source.

Figure 5.3.: Dendrograms obtained by hierarchical agglomerative clustering of crises. The

length of the branch points reflect the similarity among crises. We remark that the

clusters do not reflect similar messages, but instead similarities in terms of the pro-

portion of different information types and sources in each crisis.
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A similar picture emerges in the case of clusters by distribution of sources, shown in Fig-

ure 5.3(b). In this case, there is a large cluster dominated by human-induced crises (on the top),

followed by two small clusters encompassing only natural hazards, and the Singapore haze 2013

as an outlier (this haze was caused by a mix of natural and human causes). Further, the large

cluster on the top is dominated by instantaneous events (with two exceptions, Typhoon Yolanda

and Sardinia Floods in 2013), while in the other clusters the events are progressive, excepting

Italy earthquakes in 2012.

Furthermore, while the events development and type arise as the main factors impacting the

clusters composition, in both Figures 5.3(a) and 5.3(b) we also notice that the clusters are being

dominated by either diffused (top cluster by information type and bottom clusters by infor-

mation source) or focalized events (the remaining clusters). The clusters tendency to encom-

pass events that are similar along all these dimensions is likely explained by the dependency

among the crisis dimensions (e.g., typically, the progressive events are also diffused and human-

induced crises tend to be focalized).

5.7. Discussion: Social Media

Disasters are common events that occur regularly; the United Nations Office for Coordination

of Humanitarian Affairs recorded 394 disasters caused by natural hazards in the 2002–2011

period [240]. While disasters take place often, and may be caused by similar hazards and/or

human actions, each event is unique [255] (pag. 5). Regardless of their distinct nature, and of

variations in individual reactions and responses, commonalities across crises exist. Sociologists

of disaster point out that despite the differences among disaster agents (e.g. flood, earthquake,

bomb, fire), there are actions that planning and emergency response teams must take that are

independent of these differences [307].

This brings us to an interesting juxtaposition; the types and amounts of information broadcast

on Twitter differ across each of the 26 specific crises we studied. This can be viewed as a

display of the uniqueness of each event. In some cases the most common tweet in one crisis

(e.g. eyewitness accounts in the Singapore haze crisis in 2013) was absent in another (e.g.

eyewitness accounts in the Savar building collapse in 2013). Furthermore, even two events of

the same type in the same country (e.g. Typhoon Yolanda in 2013 and Typhoon Pablo in 2012,

both in the Philippines), may look quite different vis-à-vis the information on which people tend

to focus.
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Yet, when we look at the Twitter data at a meta-level, our analysis reveals commonalities among

the types of information people tend to be concerned with, given the particular dimensions of

the situations such as hazard category (e.g. natural, human-induced, geophysical, accidental),

hazard type (e.g. earthquake, explosion), whether it is instantaneous or progressive, and whether

it is focalized or diffused. For instance, caution and advice tweets from government sources are

more common in progressive disasters than in instantaneous ones. The similarities do not end

there. When grouping crises automatically based on similarities in the distributions of different

classes of tweets, we also realize that despite the variability, human-induced crises tend to be

more similar to each other than to natural hazards.

This leads us to believe that we can view Twitter as a medium through which the nuance of

disaster events is highlighted or amplified; it is a tool that becomes incorporated into the social

construction of the disaster event, and through which we can understand the detailed differences

on a large scale when we look closely at Twitter data. At the same time, when we look at those

same data at a higher level, we see commonalities and patterns.

Practitioners, including emergency managers, public information officers, and those who de-

velop the tools used by them, should consider that the proportion of tweets that are relevant for

a specific purpose will almost invariably be smaller than the proportion of the tweets that are

not. For instance, if an analyst or an application focuses on content that is not present in main-

stream or other Internet media sources, and wants to exclude content provided by outsiders who

are not affected by the crisis, then it will have to skip through 80% of the tweets on average. The

same holds for information types. If we group together the four main types we used (affected

individuals, donations and volunteering, caution and advice, and infrastructure and utilities),

they cover on average 47% of the tweets related to a crisis. This implies that if an application

wants to focus on these information types, at least 53% of the messages will have to be dis-

carded. These are lower bounds, as often not all of the tweets of a given type will be relevant for

a particular application. Noise is a natural consequence of the diversity of information in this

medium.

Developers should consider that emergency response includes a set of actions that have to be

taken in preparation of any crisis event, plus a broad space for adaptability in response to specific

events [307]. Hence, tools to process social media in disaster should consider that there are

broad classes of information that are likely to be prevalent, and can be anticipated to occur. At

the same time, a substantial volume of messages will depend on specificities of every event, and

tools must incorporate methods to adaptively detect and process them.
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5.8. Conclusions

The overarching goal of this case study is to test how much the observations made on one data

set can be generalized to other data sets by identifying systematic similarities and differences

among them in the context of social media use during crisis situations.

Our systematic examination of a diverse set of crisis situations finds patterns and consisten-

cies across crises, but it also uncover substantial variability across different event data sets,

highlighting the pitfalls of generalizing findings from one data set to another. Specifically, we

see that intrinsic characteristics of the crisis situations (e.g. being instantaneous or progressive)

produce consistent effects on the types of information broadcast on Twitter. Additionally, on

the application side, to the best of our knowledge, this is the largest transversal study on tweets

broadcast in response to various international disaster and crisis situations.

5.8.1. Limitations and Future Work

Social media communications in crisis. On the application side, the high-level patterns we

have found lay the foundations for future studies that go into the detail of each specific crisis or

each specific information category analyzed.

However, we note that we did not cover all possible crisis situations. For instance, we did

not include human-induced progressive or diffused situations, which are less common than

the classes we did study. The former (human-induced progressive) mostly refers to politically-

driven crises, such as instability leading to demonstrations, riots, and/or civil wars. The latter

(human-induced diffused) in recent years have been mostly wars affecting an entire country

or region, or less-common, large-scale industrial accidents such as the oil spill in the Gulf of

Mexico in 2010. Additionally, the management of a crisis is typically divided into phases: mit-

igation, preparedness, response and recovery [252, 307]. This case study is concerned mostly

with the response phase and partially with the recovery phase, as these attract the bulk of social

media activities [151, 64]. Language and cultural differences could also be included as explicit

crisis dimensions [138, 257], together with temporal factors. Microblogging practices are likely

to evolve over the years, and our collections cover a period of just about 20 months. The study

of other crisis dimensions, other types of crises and other phases, will certainly deepen our

findings. Additionally, extending this research to other social media platforms will help un-

derstanding what are the similarities and differences in how various platforms are used during

crisis situations.
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Methodologically, we asked crowdsource workers to match each tweet to one specific class.

This simplifies the labeling process and makes the presentation of the results clearer. When

workers associate a tweet to multiple classes, it may be possible that the distributions change.

Employing professional emergency managers as annotators instead of crowdsource workers

may lead to further results. Finally, assessing the quality, credibility, or veracity of the informa-

tion in each tweet is relevant for most of the potential consumers of this data. However, we note

that in these cases the cost of the annotation would certainly increase—or the amount of labeled

data would decrease.

Social Media Collection Biases. We found that the biases and consistencies in the data collec-

tions we uncovered tend to depend on the intrinsic characteristics of the events being analyzed

(e.g. involving a small or a wide area). Future work should test if similar patterns hold across

other domains as well. To this end, the analysis methodology that we have described in this

Chapter, can be extended to a variety of other topics such as sport events or political elections.

To conduct the study on a different domain, the main elements that require adaptation are the

event taxonomy and the message taxonomy (although this might require some familiarity with

the topic).

5.8.2. Reproducibility & Data Release

To ensure and support the reproducibility and replicability of this case study, the tweets used

in this research, and the labels collected through the crowdsourced annotation, are available for

research purposes at http://crisislex.org/.
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6. Leveraging Domain: The Case of Data
Sampling

To explore how we can improve social data sets at collection time, we focus back on social

media use during crisis situations. For this application the quality of the data collections is

particularly important as locating timely, useful information during crises and mass emergencies

is critical for those forced to make potentially life-altering decisions. Yet, as the use of Twitter

to broadcast useful information during such situations becomes more widespread, the problem

of finding it becomes more difficult. We describe an approach toward improving the recall in the

sampling of Twitter communications that can lead to greater situational awareness during crisis

situations. First, we create a lexicon of crisis-related terms that frequently appear in relevant

messages posted during different types of crisis situations. Next, we demonstrate how we use

the lexicon to automatically identify new terms that describe a given crisis. Finally, we explain

how to efficiently query Twitter to extract crisis-related messages during emergency events.

In our experiments, using a crisis lexicon leads to substantial improvements in terms of recall

when added to a set of crisis-specific keywords manually chosen by experts; it also helps to

preserve the original distribution of message types.

6.1. Background

As discussed in Chapter 5, the popular microblogging platform Twitter is a frequent destination

for affected populations during mass emergencies. Twitter is a place to exchange information,

ask questions, offer advice, and otherwise stay informed about the event. Those affected require

timely, relevant information. In Chapter 5 we showed that information broadcast on Twitter can

lead to enhanced situational awareness, and help those faced with an emergency to gain valuable

information, this observation is also consistent with [314].

0The study described in this Chapter was done while the thesis author was an intern at Qatar Computing Research

Institute, and was published in [245].
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The velocity and volume of messages (tweets) in Twitter during mass emergencies makes it

difficult to locate situational awareness information, such as road closure locations, or where

people need water. Users often employ conventional markers known as hashtags to bring atten-

tion to specific tweets. As detailed in Section 5.4.2, the idea is that those looking for emergency

information will search for specific hashtags, and tweets that contain the hashtag will be lo-

cated. In crisis, hashtags are often adopted by an information propagation process [293], but

in some cases, they are suggested by emergency response agencies or other authorities. Alas,

even with several dozen such hashtags, only a fraction of the information broadcast on Twitter

during mass emergencies is covered [42, 311]. Therefore, automatic methods are necessary to

help humans cull through the masses of Twitter data to find useful information.

6.1.1. Contributions

In this Chapter, we explore the problem of improving the quality of the working data collections

with respect to the overall platform data. To do so, here, we tackle the specific problem of

how to locate tweets that contain crisis-relevant information during mass emergency situations:

our goal is to improve query methods, and return more relevant results than is possible using

conventional manually-edited keywords or location-based searches.

Problem definition. Given a crisis situation that occurs within a geographical boundary, auto-

matically determine a query of up to K terms that can be used to sample a large set of crisis-

related messages from Twitter.

Our approach. Create a crisis lexicon consisting of crisis-related terms that tend to frequently

appear across various crisis situations. This lexicon has two main applications:

1. Increase the recall in the sampling of crisis-related messages (particularly at the start of

the event), without incurring a significant loss in terms of precision.

2. Automatically identify the terms used to describe a crisis by employing pseudo-relevance

feedback mechanisms.

Generalizability. Our approach is presented with respect to crises, but it can be applied to any

domain. We describe a systematic method to build the lexicon using existing data samples and

crowdsourced labeling; the method is general and can be applied to other tasks (e.g. to build

a sports-related or a health-related lexicon). The lexicon, along with the data and the code we

used to build it are available at http://crisislex.org/.
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6.1.2. Related Work

Mining social media in crises. During crises, numerous disaster-related messages are posted

to microblogging sites, which has led to research on understanding social media use in disas-

ters [292, 263], and extracting useful information [152].

The first challenge in using microblog data is to retrieve comprehensive sets of disaster-related

tweets [43]. This is due to Twitter’s public API limitations (described in §6.2.1) that make this

type of data collection difficult. To the best of our knowledge, data collection during crises usu-

ally falls in two categories: keyword-based collections and location-based collections , with the

former being more common. In a keyword-based collection, a handful of terms and/or hashtags

are used to retrieve tweets containing those terms [146] ignoring other posts [43]. While the

resulting samples might have little noise [316], they are typically constructed around visible

topical hashtags and might omit a significant number of disaster-related tweets [42]. Further-

more, keywords are only as responsive as the humans curating them and this method may lose

relevant tweets due to latency. Location-based sampling, on the other hand, is limited to tweets

that are either geo-tagged or mention the places affected by the disaster; both of these conditions

occur in a small portion of tweets.

Once collected, it is necessary to process the data in a meaningful way. Imran et al. [152]

automatically identify tweets contributing to situational awareness and classify them according

to several types of information. Yin et al. [336] designed a system for leveraging microblog

data during disasters; their data capture module is close in scope with our work, yet it makes

no distinction between disasters and other events. In turn, our lexicon could enhance their burst

detection mechanisms to better identify disasters.

Query generation and expansion. Our problem resembles deep-web crawling, the process by

which web crawlers access public data (belonging to large online retailers, libraries, etc.) on the

web that is not accessible by following links, but only by filling in search forms. To this end, it

performs query generation: identify a set of keywords that are entered in search forms to return

such data [328, 339].

The goal of exhaustively retrieving documents hidden behind web interfaces has been ap-

proached as a minimum weighted dominating set and set-covering graph problems [339, 328].

We reuse the idea of representing document or term co-occurrences as a graph, but we formalize

our problem as finding the maximum weighted independent set as we look for discriminative

queries that maximize only the volume of retrieved documents relevant to given topics (Sec-

tion 6.3.1). In web search, reformulating the initial query such that it returns documents from

103



6. Leveraging Domain: The Case of Data Sampling

the domain of interest is known as vertical selection and aggregation. Arguello et al. [19] reuse

past knowledge to predict models for new domains by focusing on portability and adaptability.

We use their idea of supervision and use knowledge on past crises to generate queries for future

ones.

The query generation step can be followed by query expansion that after searching with an

initial query adds to it new terms [67]. For this, pseudo-relevance feedback (PRF) is typically

used. It scores and selects new terms according to their distribution in the feedback documents

(i.e., those retrieved with the initial query), or according to the comparison of their distribu-

tion in these documents and the entire collection [330]. Re-sampling PRF terms by combining

PRF results from several query sub-samples downturns the chance of adding noisy terms to the

query [62]. However, Twitter API terms of use do not allow us to run similar queries simulta-

neously, and running them sequentially might lead to data loss at the beginning of the crisis.

Hence, we cluster tweets based on which terms matched them, treating each term as a different

query [330].

Adaptive information filtering. Unlike classic query generation and expansion on static col-

lections, the data stream relevant to crisis events evolves over time. Our query is maintained

over long periods, performs a binary selection rather than compiling a ranked list of documents,

and is limited in size—akin to information filtering over streams of documents [13, 192].

In contrast to current approaches that exploit the time dimension of a static microblog collection

[222, 229], we collect data as it is produced, rather than searching in a historical repository.

Wang et al. [319] expands a user-provided query with new hashtags to retrieve more microblog

data related to given events. We automate the entire retrieval process by exploiting knowledge

on past crises to generate a query, which is then expanded with terms specific to new crises.

Lexicon building. We exploit the fact of having a single domain by creating a lexicon that

captures crisis-relevant terms frequently used in crises tweets, which is then adapted to a spe-

cific event (Section 6.3). Typically there are two design decisions regarding lexicons: catego-

rize terms in a number of predefined categories (e.g., WordNet, VerbNet), and/or weight terms

across one or more dimensions (e.g., SentiWordNet). The former is adopted for building broad

linguistic resources with numerous dimensions. If the application domain is more focused (e.g.,

sentiment extraction) the latter is used [163], which we also adopt here.
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6.2. Data sets and Evaluation Framework

In this section we describe the input data sets we use, and the evaluation method and metrics by

which we compare different alternative strategies.

6.2.1. API limits

Twitter’s API for accessing tweets in real-time (the streaming API) has several limitations. The

two that are most relevant for the work we describe in this Chapter are the following.

First, tweets can be queried by content or by geographical location. Specifically, if both content

and geographical criteria are specified, the query is interpreted as a disjunction (logical OR)

of both. The content criterion is specified as the disjunction of up to 400 terms, in which each

term is a case-insensitive conjunction of words without preserving order. The location criterion

is specified as the disjunction of a set of up to 25 rectangles in coordinate space.

Second, independently of the method used to query, the resulting set is limited to 1% of the

stream data. If the query matches more than 1% of the data, then the data is sub-sampled uni-

formly at random. As a result, even if we use a “blank” query (collect everything), we never

obtain more than a sample of 1% of tweets. As a query becomes broader (i.e, by including more

terms or a larger geographical region) at some point we start losing tweets because of this limi-

tation. This means that “collecting everything and then post-filtering” is an ineffective sampling

method: at least part of the selection must be done at query time.

6.2.2. Data sets

We use data from 6 disasters between October 2012 and July 2013, occurring in English-

speaking countries (USA, Canada, and Australia) which affected up to several million people.

Crisis keywords were defined by two research groups: Aron Culotta’s “Data Science for Social

Good” team [21], and the NSF SoCS project group at Kno.e.sis using the Twitris tool [284],

who shared partial lists of tweet-ids with us. Location-based data was partially collected using

Topsy analytics. As detailed in Table 6.1, for each disaster we use two sets of data collected from

Twitter: (1) a keyword-based sample1 and (2) a location-based sample. We note that filtering by

1The West Texas explosion keyword-collection was obtained from GNIP, which allows more expressive query

formulation than the Twitter API. We used an estimated query that approximates this collection with a precision

and recall higher than 98%.
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6.2. Data sets and Evaluation Framework

a conjunction of keywords and locations is not possible using Twitter’s current streaming APIs.

In addition, both of these conditions occur in only a fraction of the relevant tweets (Section

6.2.3).

The keywords-based samples use keywords chosen by the data providers following standard

practices for this type of data collection. This typically includes hashtags suggested by news

media and response agencies,2 terms that combine proper names with the canonical name of

the disaster (e.g., oklahoma tornado), or the proper names given to meteorological phenomena

(e.g., typhoon pablo).

The location-based samples are obtained by collecting all the postings containing geograph-

ical coordinates inside the affected areas. Geographical coordinates are typically added auto-

matically by mobile devices that have a GPS sensor, in which their users have allowed this

information to be attached to tweets. Location-based samples were obtained through two data

providers: GNIP,3 which allows to specify a region through a rectangle defined by geographical

coordinates, or Topsy,4 which additionally allows to indicate the names of the places of interest

(counties, states, etc.)

6.2.3. Evaluation Framework

Our filtering task can be seen as a binary classification task. The positive class corresponds

to messages that are related to a crisis situation, while the negative class corresponds to the

remaining messages. This is a broader, more inclusive definition than being informative [152],

or enhancing situational awareness [314].

Labeling crisis messages. The labeling of messages was done through the crowdsourcing plat-

form Crowdflower5. For efficiency and to improve the quality of the data we use to train our

models, we perform a pre-filtering step. We first eliminate messages that contain less than 5

words as we deem them too short for training our lexicon. Next, we eliminate messages that

are unlikely to be in English by checking that at least 66% of the words were in an English

dictionary.6

The task is designed to encourage crowd-workers to be inclusive, which is aligned with the goal

2http://irevolution.net/2012/12/04/catch-22/
3http://www.gnip.com/
4http://www.topsy.com/
5http://www.crowdflower.com/
6NLTK’s English dictionary and the English database WordNet.
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6. Leveraging Domain: The Case of Data Sampling

Categorize tweets posted during the 2013 Oklahoma Tornado:

Read carefully the tweets and categorize them as:

A. In English and directly related to the tornado.

– “The tornado in Oklahoma was at least a mile wide”

B. In English and indirectly related to the tornado.

– “The nature power is unimaginable. Praying for all those affected.”

C. In English and not related to the tornado.

– “Oklahoma played well soccer this night”

D. Not in English, too short, not readable, or other issues.

– “El tornado en Oklahoma ...”

“Seeing everyone support #Oklahoma makes my heart smile!#oklahomatornado”

This tweet is:

A. In English and directly related to the tornado.

B. In English and indirectly related to the tornado.

C. In English and not related to the tornado.

D. Not in English, too short, not readable, or other issues.

Figure 6.1.: Example instructions (top) and example crowdsourcing task (bottom) used for la-

beling crisis messages.

of having high recall. We present workers a tweet and ask if it is in English and:

(A) directly related to a disaster,

(B) indirectly related,

(C) not related, or

(D) not in English or not understandable.

For purposes of our evaluation, the positive class is the union of tweets found to be directly and

indirectly related, and the negative class is the set of tweets found to be not related.

For clarity, we include the type of disaster in the question. Example instructions appear in

Figure 6.1. We showed crowd-workers 15 tweets at a time, out of which one tweet was labeled

by the author of this thesis, and used to control the annotation quality of crowdworkers. Given

the subjectivity of the task, tweets used to control quality were selected to be obvious cases for

each category.

From each crisis we labeled 10,050 tweets selected uniformly at random from the keyword-

based sample (50% of labels) and location-based sample (50% of the labels). On average, about

100 workers participated in each crowd-task. We asked for at least 3 labels per tweet and kept the

majority label. On average, 31.5% tweets were labeled as directly related, 22.2% as indirectly

related, 45.8% as not-related, and 0.5% as not in English, etc.

Measuring precision and recall. Evaluating precision is straightforward, as it corresponds to

the probability that a message included in a sample belongs to the positive class. Evaluating

recall is more difficult as it requires a complete collection containing all the crisis-related mes-
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6.2. Data sets and Evaluation Framework

Keyword-based Location-based

Disaster Prec. Recall Prec. Recall

West Texas Explosion 98.0% 29.0% 6.7% (100.0%)

Alberta Floods 96.0% 41.9% 8.0% (100.0%)

Boston Bombings 86.3% 25.3% 15.9% (100.0%)

Sandy Hurricane 92.1% 39.3% 26.1% (100.0%)

Queensland Floods 71.2% 17.9% 8.8% (100.0%)

Oklahoma Tornado 66.2% 45.4% 9.0% (100.0%)

Average 85.0% 33.1% 12.4% (100.0%)

Table 6.2.: Precision and recall of keyword-based and location-based sampling. The task is find-

ing crisis-related messages.

sages for each disaster. Yet, such a collection may require to label up to 300K messages to cover

a single minute of Twitter activity.7

Since our methods rely on selecting tweets based on keywords, we evaluate them on the location-

based sample. According to this definition, the recall of a keyword-based sampling method is

the probability that a positive element in the location-based sample matches its keywords.

Table 6.2 evaluates the keyword-based and location-based samples using the crowdworker la-

bels. Both precision and recall vary significantly across crises. In general, the precision of

keyword-based sampling (66% to 98%) is higher than that of location-based sampling (7%

to 26%). We note that the average recall of about 33% that we observe in the keyword-based

samples means that about two thirds of the crisis-related messages in the location-based sam-

ples do not contain the specified keywords – that is the main motivation for the methods we

describe in Section 6.3.

Further metrics. We regard the problem of collecting crisis messages as a recall-oriented

task. Our solution should accept messages when in doubt, without accepting all messages which

yields a trivial 100% recall.

There is a significant imbalance between the positive and negative classes, as seen in Table 6.2.

Due to this, we use the metric G-mean – the geometric mean of the recall of the positive class

and the recall of the negative class—often used to assess the classification performance on

imbalanced data [298]. Furthermore, we measure the F2 and F1 scores, where Fk is
(1+k2)PR
k2P+R

with P and R being precision and recall, with emphasis on the F2 score which weights the

recall more heavily for reasons we have explained.

We also evaluate the proportion of different classes of messages (e.g. related to donations, warn-

7https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
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6. Leveraging Domain: The Case of Data Sampling

ings) in each sample to understand the representativeness of the data samples yield by each of

the approaches we test in this Chapter. We defer the explanation of that evaluation to Sec-

tion 6.4.2.

6.3. Proposed Method

Our method is based on creating a generic crisis lexicon: a list of terms to be used instead of a

manual query to sample crisis-related messages. This crisis lexicon can be expanded with terms

specific to a given crisis, either manually, or by using a mechanism similar to pseudo-relevance

feedback.

6.3.1. Building the Lexicon

Figure 6.2 depicts the steps we take to construct the lexicon. We start by selecting the set of

terms that discriminate crisis-related messages (L0). Next, we refine this set by performing a

series of curation steps filtering out both contextual and general terms as decided by crowd-

workers (L1...3). Finally, we filter out terms that frequently co-occur to maximize recall for a

limited sized lexicon (topdiv(·)).

Candidate Generation Step (L0)

Term selection. Our candidate terms are word unigrams and bigrams. We start with tweets from

the positive and negative classes described in Section 6.2. We remove URLs and user mentions

(@username). After tokenizing, we discard tokens that are too short (2 characters or less), too

long (16 characters or more, typically corresponding to concatenated strings of words), or that

correspond to punctuation, numbers, or stopwords. The remaining words are stemmed using

Porter’s stemmer.8 Word unigram and bigrams are then extracted, and kept if they appear in at

least 0.5% of the tweets.

Term scoring. Each term is then scored by two well-known statistical tests: chi-squared (χ2)

and point-wise mutual information (PMI), used in the past for lexicon creation [163]. Details

are in Appendix A.1.

8http://tartarus.org/ martin/PorterStemmer/
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6.3. Proposed Method

Figure 6.2.: Steps in the lexicon construction (left), and in the evaluation of the lexicon combi-

nation with pseudo-relevance feedback and expert-provided keywords (right). T (·)
selects the highest-scoring terms: top(·), or the highest-scoring terms ensuring di-

versity: topdiv(·)

We refer to the result of a statistical test of discriminative value for a term t on a crisis c as

its discriminative score discr(c, t). We rank terms according to this score, divide them in n-

quantiles of one term each, and score each term t belonging to the k-th quantile according

to the quantile probability ( kn ). We can use this score directly, or combine it with the term’s

frequency in the crisis-related tweets (γ) by multiplying it with the probability of the quantile

to which t belongs when the ranking is done according to γ instead of discr(c, t). We map

scores to quantiles to give equal weight to the term’s discr(c, t) and its frequency. The outcome

is a per-crisis score of a term s(c, t).

For our lexicon to be general, we look for terms that work well across a variety of crises.

We tested multiple aggregations of scores across crises including median, mean, and harmonic

mean. The best result was obtained when computing the mean crisis score of a term across

crises, and then multiplying it by a sigmoid function to favor terms that appear in (at least 0.5%
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6. Leveraging Domain: The Case of Data Sampling

Indicate if the term is specific to a particular disaster: it contains the name of a place, the name of a person, or the name of a

disaster:

A. YES, it contains a place name or it refers to the name of a region, city, etc.

– “Jersey flood”; “California people”; “okc tornado”

B. YES, it contains a person name or it refers to the name of a politician, etc.

– “Obama”; “Kevin donate”; “John hurt”

C. YES, it contains a reference to the name given to a disaster

– “Sandy hurricane”; “abfloods”; “yycfloods”

D. NO.

– “tornado”; “hurricanes”; “help rebuild”; “firefighter”; “rise”; “flame”; “every”

Indicate if the term is more likely to appear in Twitter during hazards:

A. YES, it is likely to appear more often during hazards/disasters.

– “tornado”; “donate help”; “people killed”; “state emergency”

B. NO, but could appear frequently during hazards/disasters as well.

– “power”; “water”; “nursing”; “recover”

C. NO, it shouldn’t appear more often during hazards/disasters.

– “children”; “latest”; “south”; “voted”

Figure 6.3.: Crowdtask for filtering name terms (top) and identifying strong and weak crisis-

related terms (bottom).

of the tweets of) several crises:

sagg(t) =
1

1 + e−
|Ct|
2

1

|Ct|
∑
c∈Ct

s(c, t) (6.1)

Where Ct is the set of crises in which t appears. If Ct is large enough the sigmoid function

converges to 1 (> 0.9 when |Ct| > 4), while when the term appears to be discriminative in only

one crisis, this factor is around 0.6.

Curation Steps (L1...3). After identifying and scoring the set of candidate terms L0, we per-

form a series of curation steps depicted in Figure 6.2 which yield increasingly filtered sets L1

through L3, which we detail next.

Removal of names (L1). We remove terms that name contextual elements unique to a crisis.

Such terms mainly fall within three categories: (a) the names of affected areas; (b) the names

of individuals involved in the disaster; and (c) the names used to refer to a disaster. We ask

evaluators if a term contains such proper nouns, which filtered out about 25% of the terms. The

task description is in Figure 6.3 (top).

Removal of non-crisis terms (L2 and L3). Next, we filter out those words that are not specific

to disasters. We consider three levels of crisis relevance:

(1) strongly crisis-specific: the term is likely to appear more often during disasters;

(2) weakly crisis-specific: the term could appear frequently during disasters; and

(3) not crisis-specific: the term should not appear more often during disasters.
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6.3. Proposed Method

We ask evaluators to label each term with one of these categories. This task is depicted in

Figure 6.3 (bottom). Of the terms that pass the previous filtering step (L1), around 50% of them

are filtered out by weak filtering (L2) and around 65% by strong filtering (L3).

Top-terms selection step. Twitter’s API allows us to track up to K = 400 keywords, making

this the maximum size of our lexicon. To use this allocation effectively, we test two strategies:

top(·) and topdiv(·). The first strategy selects the top terms according to their crisis score.

The second also selects the top terms according to crisis scores, but removes terms with lower

crisis scores that frequently co-occur with higher score terms, as they match on a similar set

of tweets. To find such a subset of terms, we compute the independent set on the term co-

occurrence graph thresholded at a given level.9 Given a set of queries (keywords- and location-

based) and a collection of relevant tweets for each query, we build a graph G in which nodes are

terms weighted by their crisis score, and between each pair of terms that co-occur in more than

50% of the tweets, we draw an unweighted edge. Then, we determine the maximum weighted

independent set (MWIS) of G, which represents a subset of terms with high scores that rarely

co-occur. Intuitively, this improves recall (since the lexicon has a limited number of terms).

The maximum independent set problem is NP-complete [303]. To this end, we compared the

approximation method in [31] with a simple greedy algorithm (GMWIS) that keeps the most

discriminative terms that rarely co-occur. Since the latter obtained slightly higher recall scores,

we focus the discussion on those results obtained with GMWIS.

6.3.2. Applying the Lexicon

Pseudo-relevance feedback. We adapt the generic lexicon with terms specific to the targeted

crisis. To identify such terms we employ pseudo-relevance feedback (PRF) mechanisms with

the following framework:

(i) Given a lexicon lex containing at most 400 terms, retrieve crisis relevant tweets in the first

Δt hours of the event. We refer to these tweets as pseudo-relevant.

(i) From these tweets, extract and sort the terms (unigrams and bigrams) – which do not already

belong to the lexicon – by their PRF score (explained below). Return the top k terms to be

added to the lexicon.

A similar methodology has showed effectiveness in other Twitter-related search tasks [92].

9The idea of mapping terms co-occurrences on a graph is inspired from [339, 328].
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6. Leveraging Domain: The Case of Data Sampling

PRF term scoring. PRF terms are usually scored according to their distribution in the feed-

back tweets, or according to the comparison of the distribution in the feedback tweets and the

entire collection [330]. Due to having only the extracted PRF tweets, the scoring strategies we

implement fall within the former category:

• Frequency-based scoring ranks PRF terms according to their frequency in the feedback

tweets: sprf (t) = fr(t).

• Label propagation-based scoring propagates the scores from the query terms to PRF

terms based on their co-occurrence in the feedback tweets:

sprf (t) =

∑
q∈lex co(q, t)sagg(q)∑

q∈lex co(q, t)
(6.2)

where co(q, t) is the number of co-occurrences between query term q and PRF term t,

and sagg(q) the crisis score of q as defined in Equation 6.1.

PRF term selection. To select the top PRF terms we test again the two strategies described in

(§6.3.1): top(·) and topdiv(·). For topdiv(·), we compute the maximum weighted independent

set based on the co-occurrence graph formed only by PRF terms.

Terms sampling. We note that some of the selected terms might actually be harmful [47].

A workaround is to resample the terms based on their co-occurrence with sub-samples of the

original query [62]. The main hypotheses are that feedback documents form clusters according

to the query terms that matched them, and that good PRF terms occur in multiple such clus-

ters [330]. Yet, in contrast with [330], we cannot make assumptions about terms distribution in

the whole collection, since we only have the pseudo-relevant tweets, and given the short nature

of tweets we do not attempt to model their language. In contrast, we use the sigmoid function

to favor the PRF terms that co-occur with multiple query terms:

sprf (t)/(1 + e−
|Tprf (t)|

2 ) (6.3)

where Tprf (t) is the number of terms co-occurring with term t and fr(t) is t’s frequency in

PRF documents.

Hashtags. Hashtags are topical markers for tweets [310], used to learn about events and join

the conversation [293]. During crises, specific hashtags emerge from the start, with some of

them quickly fading away, while others end up being widely adopted [259]. Kamath et al. [164]

found that hashtags can reach their usage peak many hours after their initial use. Thus, even
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if they are scarce in the beginning, if widely adopted later on, hashtags improve recall. On

the other hand, if they are not adopted, they end up having little impact on the retrieved data.

Therefore, we lower the selection barrier for hashtags by employing a dedicated PRF-step: we

add the top k hashtags (appearing in at least 3 tweets) to the query according to their frequency

in the PRF documents, similar to [319].

6.4. Experimental Evaluation

We compare against two standard practices: sampling using a manually pre-selected set of key-

words, and sampling using a geographical region. The goal of the lexicon is to sample a large

set of crisis-related messages; this is what we evaluate first (§6.4.1). Next, we see if our method

introduces biases in the data collection compared to existing methods (§6.4.2).

In both cases, we perform cross-validation across disasters:

(1) leave one disaster data set out;

(2) build the crisis lexicon (L0...3) using data from the remaining disasters;

(3) evaluate on the excluded disaster data set;

(4) repeat the process for each of the 6 disasters, averaging the results.

6.4.1. Precision and Recall

We evaluate the precision and recall of different strategies for sampling crisis-related messages.

We also incorporate other metrics, particularly those that emphasize recall, as described in

§6.2.3.

Lexicon generation. First, we identify the best versions of our lexicon along the analyzed

metrics. There are several design choices that we exhaustively explore:

• The term scoring method (§6.3.1): χ2, PMI, χ2 + γ, PMI + γ, and γ.

• The curation steps executed (§6.3.1): no curation (L0), removing names (L1), keeping

weak and strong crisis terms (L2) and keeping strong crisis terms only (L3).

• Whether to select the top scoring terms: top(·), or the top scoring terms removing co-

occurring terms: topdiv(·).

This yields 40 configurations that we test along the two existing methods, i.e., keyword-based
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6. Leveraging Domain: The Case of Data Sampling

and geo-based sampling. Figure 6.4 highlights the skyline configurations, i.e., the configurations

for which there is no other configuration that simultaneously leads to higher recall and higher

precision. Further, given that the points with similar properties tend to cluster along the skyline,

we keep on the skyline only those points with the highest precision when they are within 5

percentage points from each other in terms of both precision and recall.

We notice that different methods have different precision-recall trade-offs. The term-scoring

method appears to influence these trade-offs the most. Specifically, the scoring methods that

penalize more a term’s appearance in non-crisis tweets lead to high precision at the cost of

recall (e.g., PMI); those methods that put more weight on the absolute frequency of terms in the

crisis tweets lead to high recall at the cost of precision (e.g. γ). χ2 and the combination of PMI

and χ2 with γ lead to better precision-recall trade-offs, or, in other words, they lead to higher

Fk scores.

We curate the initial list of terms to improve precision (by removing terms that are too general)

and recall (by removing terms that are too specific). Yet, curating the lexicon by removing

proper nouns (L1) lowers both the recall and precision. This effect is less pronounced when

we remove terms with lower crisis scores that often co-occur with more discriminative terms

(topdiv(·)). The next curation steps (L2 and L3) also alleviate this effect leading to higher

precision overall. However, keeping only strong crisis-related terms (L3) heavily impacts recall

(the points clustered around 40% recall and precision in Figure 6.4).

Lexicon expansion. With the parameter combinations from the skyline in Figure 6.4 (7 op-

tions), we test the performance of our lexicon when using various pseudo-relevance feedback

(PRF) mechanisms (§6.3.2). We explore the following design choices:

• PRF term scoring (§6.3.2): frequency (Fr) and label propagation (Lp).

• Whether to select the top scoring terms: top(·), or the top scoring terms removing co-

occurring terms: topdiv(·).
• Whether to favor terms that co-occur with more query terms (§6.3.2): sp, or not: ¬ sp.

• Whether to use only a hashtag (#) dedicated PRF, combine it with the PRF for terms (as

defined by the previous choices), or use the later alone (§6.3.2).

We also combine lexicons by first running PRF with Li, select the PRF terms, and then add

them to Lj , where Li, Lj are lexicons obtained with the skyline configurations of Figure 6.4;

combination denoted (Li)Lj . This yields about 700 configurations to test. For these tests we

set the number of PRF terms to 30, and PRF interval to Δt = 3 hours. We assume the data

10For brevity, in the rest of the chapter we refer to the lexicons corresponding to these configurations by this code.
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Code10 Config. Prec. Rec. GMean F1 F2

- Keywords 85.2 32.5 56.1 45.5 36.6

- Location 11.8 100.0 0.0 20.5 37.6

1 PMI L0 top 57.8 33.7 57.6 42.0 36.5

2 PMI L2 top 50.9 37.5 60.5 41.1 38.6

3 PMI+γ L0 top 43.7 53.0 72.7 46.9 50.0

4 PMI+γ L0 topdiv 39.9 64.4 80.2 48.0 56.2

5 χ2 L0 top 30.4 72.3 85.0 41.6 55.0
6 χ2 + γ L0 topdiv 25.2 77.0 87.7 36.6 52.3

7 γ L0 top 16.4 86.4 93.0 26.5 43.6

Figure 6.4.: Averaged performance of existing methods and our lexicon. Among 40 tested

(small dots), the table includes the skyline configurations (large dots).

collection, and the PRF, start simultaneously with the keywords-based collection. Results are in

Figure 6.5.

We notice that PRF boosts recall, but has little impact on precision. Further, the lexicon com-

binations with the #-dedicated PRF lead to better precision-recall trade-offs when Li has high

recall and Lj has high precision.

Expert-defined terms. To analyze how the expert-defined crisis-specific terms and the lexicon

complement each other, we add the former to the queries corresponding to the top skyline

configurations depicted in Figure 6.5.

As shown on Table 6.3, such combinations generally lead to improvements over both the key-

words and the lexicon (e.g., up to 40 percentage points recall over the crisis-specific keywords).

The only metric we do not improve on is the precision of the keyword collection, yet this is

an upper bound for precision as the expert-edited keywords are chosen to be specific only to
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p2 (5)2 - # - 53.9 51.2 70.9 50.6 50.6
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- (4)5 - # - 25.9 82.3 90.7 37.9 54.5

- 5 Fr # sp 21.7 87.9 93.7 33.2 51.0

- 7 Lp # sp 16.4 95.9 95.7 26.6 44.5

Figure 6.5.: Averaged performance of existing methods and our lexicon with PRF. From about

700 tested (small dots), the table includes the skyline configurations (large dots).

The gray area marks the configurations with precision below 35% and places the

corresponding skyline points at the end of the table. (Li)Lj means that we run

PRF with Li and then add the PRF terms to Lj , where Li is a lexicon code from

Figure 6.4.

a given disaster. Furthermore, though the precision decreases, the combination leads to bet-

ter precision-recall trade-offs, as it improves over the F-score metrics. p2 leads to the highest

gains over the lexicon-based approach and over the F1-score of the keyword-based approach—

meaning that the samples obtained with p2 and those obtain with the crisis-specific keywords

overlap the least.

Performance over time. Finally, to analyze the performance variation over time, we test two

design decisions: running PRF only one time at the beginning of the crisis (one-time PRF),

or re-running PRF after every 24 hours (online PRF). We measure the average performance’s

variation across the first three days from the start of the keyword-collections.11 Figure 6.6 shows

11We restrict this analysis to the first three days for two reasons: all collections span across at least three days, and,

typically, the largest volumes of tweets happen in the first days of the event (i.e. around the peak in the Twitter
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6. Leveraging Domain: The Case of Data Sampling

Config. Prec. Rec. Gmean F1 F2

p1
60.8

(-24.4/1.1)

55.7

(23.1/6.9)

74.2

(18.2/4.5)

56.1

(11.7/4.1)

57.3

(19.5/5.6)

p2
56.9

(-28.3/3.1)

60.7

(28.4/8.4)

77.7

(21.7/6.0)
57.7
(12.2/6.8)

59.2

(22.7/7.8)

p3
47.7

(-37.4/1.6)

66.6

(34.1/3.7)

81.5

(25.5/2.2)

54.8

(9.3/2.7)

61.0

(24.5/3.3)

p4
42.3

(-42.8/1.0)

73.5
(41.0/3.5)

85.7
(29.6/1.8)

52.4

(6.9/2.3)

62.7
(26.2/2.7)

Table 6.3.: Average performance of our lexicon when combined with crisis-specific keywords.

We also report (the improvement over such keywords/the improvement over the

method without these keywords) as percentage points.

the performance of the lexicon with both one-time PRF and online PRF in terms of recall and

F1-score relative to the crisis-specific keywords, which is the reference values. We omit the

corresponding precision plots, but note that an increase in recall with no improvement in F1-

score indicates a loss in precision.

In our experiments, the lexicon based approaches do better on average (in the range of 20 to 40

percentage points for recall and 9 to 13 percentage points for F1-score) towards the beginning

of the crisis compared to the crisis specific keywords. Then, we see a drop in the performance

relative to the keywords which might be due to more users conforming to keywords use as the

event gets global coverage, followed by an increase when the event loses coverage. Finally, al-

though employing online PRF leads to better recall values later on in the crisis, it’s improvement

in terms of F1-score over one-time PRF is only marginal.

6.4.2. Distribution of message types

We measure changes in the distribution of tweets of different types, as sampling by keywords

may introduce biases that favor one class of tweets at the expense of another. We evaluate

by asking crowdworkers to categorize tweets, and then measure the divergence between the

distribution of tweets into categories across the sampling methods. We repeat this twice us-

ing three categorizations: informativeness, information type and information source (details in

Appendix A.2).

First we check if any sampling method biases the collection towards the tweets deemed infor-

mative by crowdworkers. With one exception, we find only marginal differences across crises;

looking at crisis-relevant tweets, we find that between the lexicon and the crisis-specific key-

messages).
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Figure 6.6.: Relative performance over time of our lexicon with one-time PRF and online PRF

re: crisis-specific keywords. The table contains the reference performance by the

keywords—represented by the (red) horizontal line.

words there is a difference of less than 10 percentage points regarding the proportion of infor-

mative tweets. The (reference) location-based samples have lower proportions of informative

tweets than the lexicon and keywords-based samples. The exception is Hurricane Sandy, for

which the p2 configuration collects more informative tweets (about 18 percentage points) than

the keywords sample.

Figures 6.6(a) and 6.6(b) depict the tweets distribution according to the type and source of

information. We also show the Bhattacharyya coefficient (BC) which quantifies the overlap be-

tween the reference location-based collection, and the lexicon and the keyword-based samples

in terms of information type and source—higher BC values indicate higher similarity.

We notice large variations in tweet distributions according to both the information type and

source across crises; yet it has little to no impact on the sampling methods’ ability to preserve

the distributions. Generally, high-precision methods diverge more from the reference sample,

with the keyword-based samples being the least representative, e.g., it collects more tweets

coming from news organizations and fewer eyewitness reports (Figure 6.6(b)). In contrast, our

lexicon better preserves the reference distribution, with a BC close to 1.
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6. Leveraging Domain: The Case of Data Sampling

6.5. Conclusions

We have described a methodology for constructing an effective, general lexicon for monitoring

domain specific events, which we have extensively evaluated for crisis events. Our experiments

demonstrate a range of precision and recall operating points previously not well understood

when using only keyword or location-based sampling. This work provides researchers an in-

formed strategy for assembling a set of relevant tweets. This is a fundamental technology for

automatic linguistic analysis tools such as temporal summarization [127].

The impact of these results goes beyond an algorithmic understanding. We showed that the

amount of data that it is currently mined represents only a fraction of the data posted during

disasters. We believe that such lexicons can support others interested in increasing the recall of

their data collections, but who may not have the ability to finely tune their lexicons.

6.5.1. Future Work

There are many directions in which to take the work we described in this Chapter.

Social Media in Crises. First, users are often interested in classifications more finely grained

than ‘relevant’ or ‘non-relevant’: e.g., emergency responders may be interested in personal or

property loss tweets, each of which will admit its own lexicon.

Improving Data Collection. Second, though our techniques to improve the quality of the data

collections are in principle language-independent and domain-independent, we want to build

lexicons which demonstrate this. Further, when using a lexicon to collect data through an API,

if the API is more limited or less limited, or limited in a different way, our results may have to

be adapted. Finally, it would be desirable to keep human effort to a minimum—mostly because

one may want to build a specialized lexicon in a short time—and, thus, more efforts are needed

to develop methods that simplify the manual steps of the process.

6.5.2. Reproducibility & Data Release

To ensure and support the reproducibility and replicability of this case study, the crisis lexicon,

the list of keywords, geographical regions, etc. along with the labeled data sets as sets of (tweet-

ids, label, and metadata) are available for research purposes at http://crisislex.org/.

122



7. Methods Assessment: A Study of Item
Recommendation

In this Chapter, we explore the sensitivity of social data methods to data biases and variability,

by focusing on recommendation systems—one of the most popular (and long-standing) ap-

plications that leverages online social behavioral traces, which is today inescapable in a wide

range of web applications. Particularly, the rise of online social networks created new predic-

tion opportunities for recommendation systems: instead of relying on past rating history through

the use of collaborative filtering (CF), they can leverage the social relations among users as a

predictor of user tastes similarity.

Alas, little effort has been put into (i) understanding when and why—e.g., for which users and

what items—the social affinity (how well connected users are in the social network) is a better

predictor of user preferences than the interest affinity among them as algorithmically determined

by CF; and (ii) and how to better evaluate recommendations depending on the recommendation

context such as the type of users a recommendation application targets. This oversight is ex-

plained in part by the lack of a systematic collection of data sets including both the explicit

social network among users and the collaborative annotated items. To fill this gap, we conduct

an extensive empirical analysis on six real-world publicly available data sets from four distinct

recommendation sites. We dissect the impact of user and item attributes, such as the density of

social ties or item rating patterns, on the performance of recommendation strategies relying on

either the social ties or past rating similarity. Our findings represent practical guidelines that can

inform methods evaluation and can assist in future deployments and mixing schemes.

7.1. Background

The recommendation systems are inescapable in a wide range of web applications, e.g. Amazon

or Netflix, to provide users with books or movies that match their interest. Accurate recommen-

dations generate returns of investments up to 30% due to increased sales [180]. Many such
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systems rely on collaborative filtering (CF) approaches that recommend items based on user

rating history. Concomitantly, the rising popularity of social networks has provided new op-

portunities to filter out relevant content for users. For instance, recommendation services like

Epinions, Last.fm or BeerAdvocate are enhanced with virtual social networks.

As a result, existing works have proposed both pure social recommenders (SR)1 that only lever-

age the social ties among users [216], and hybrid approaches that either augment the CF rec-

ommendation engine with social guidelines [283, 211], or incorporate CF mechanisms into a

social recommendation engine [154].

A common practice in evaluating such approaches is to resort to (i) one [302, 334, 223, 156,

154, 181, 210], sometimes two [283, 211] data sets and (ii) global averages for the metrics of

choice. Alas, this has made it difficult to draw generalizable conclusions on the effectiveness of

leveraging the social ties for recommendations compared with CF across data sets of different

nature.

Furthermore, the use of global metrics2 to evaluate and compare the recommendation ap-

proaches may be inconclusive as they provide little insight into when and why the approaches

succeed or fail [94]. Although the impact of the parameters of a recommendation strategy has

been often inspected [56, 283, 156, 301, 209, 154, 34], little systematic effort has been devoted

into understanding how various user or item attributes are affecting the performance [10], and

none of such analyses, to our knowledge, have included SR approaches.

7.1.1. Contributions

Orthogonal to designing better hybrid approaches that combine SR and CF features, our goal

is to gain insight into the relative benefits of each of these approaches that, in turn, can guide

future deployments and mixing schemes. To do so, we perform an extensive empirical analysis

that dissects the recommendation performance, measured by precision and coverage, and does

a fine grained comparison across various user and item classes on six publicly available data

sets including both the ratings information and the social network among users (Section 7.3).

All data sets are medium to large-scale and exhibit various properties regarding user social ties

and items ratings. We focus on the two ends of the problem spectrum, which places on the one

side the interest affinity among users (respectively items), as algorithmically determined by CF

from user rating history, and at the other side the social affinity as inferred from users social

1For readability, in this chapter we use social to refer to both trust and social ties.
2Metrics that are computed or averaged over all predictions.
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network by pure SR (Section 7.2). Our analysis addresses two main questions:

(1) Are global metrics able to reflect the performance of a given recommendation strategy across

various settings? Our analysis shows that one cannot rely on global metrics to assess a given

recommender performance not only across all data sets but also within each data set, across dif-

ferent classes of users or items. Even a slight change in the global average might hide important

changes in the performance distribution across a data set demographics. One may thus need to

understand and optimize the performance on a specific demographic subset depending on the

application specifics—e.g., for a beer recommendation service, it might be more important to be

accurate in the recommendations made to experienced and, likely, harder to please users [217].

(2) Are there user or item attributes that hint at the CF (interest affinity) performance with

respect to SR (social affinity)? In our results, we find that when the basis of formulating con-

nections among users stems from plain friendship, rather than from sharing interests, SR leads

to less precise recommendations. Further, items likeability (the rating they received on average)

and user selectiveness (the rating they give on average) are good predictors of the recommen-

dation performance: relying on social affinity leads to more precise predictions for highly liked

items, while for indulgent users (that typically give high ratings) leveraging the interest affinity

for items similarity is best. More results are discussed in (Section 7.3).

7.1.2. Related Work

Collaborative Filtering (CF) has been widely used by major commercial applications such

as Amazon, Movielens, or Netflix [180, 207, 9]. These methods leverage users rating history

and predict the rating of a target item i and a source user u by looking at the ratings on the

target item given by similar users to u, user-based approaches [118], or at what ratings items

similar to the target item have received from the source user, item-based approaches [277]. Yet,

relying solely on collaborative filtering is known to be ineffective when dealing with large num-

bers of items, given the sparsity of the user-item ratings matrix. Cold start users and items are

particularly affected, CF often failing to make predictions in such cases (i.e., leading to a low

coverage). While collaborative filtering approaches fall within two main classes, neighborhood-

and model-based approaches [78], for this case-study we focus on the former as due to its’ ten-

dency to better capture local associations in the data we consider it more suitable for juxtaposing

different ways of measuring the affinity among users or items (as we detail in §7.2.1).

Social recommender systems (SR) In contrast, SR systems leverage users social ties to make

predictions [340, 216, 256, 117, 223], assuming that these reflect common tastes or interests.
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SR systems deal better with cold start users, as they require users only to be connected to

other users in the social network, and, thus, do not have to wait for users to grow a rating

history to make predictions. Alas, while these systems tend to achieve better coverage, they

can also suffer due to sparse ratings and sparse trust relations. Thus, in order to consider the

ratings of users that are not directly connected, various approaches propagate the trust among

their users [340, 117, 216, 223]. Yet, in these cases the recommender might end up considering

ratings of weakly trusted users, thus affecting the precision [154].

Social-enhanced collaborative approaches incorporate social factors to the collaborative frame-

work by tailoring the rating similarity based on the social ties [181]; making predictions based

on friend ratings weighted by the level of trust, and integrating them in the CF framework [209];

adding social regularization factors to matrix factorization recommendation techniques by con-

straining a user inferred taste (her feature vector) with the average taste of her friends, and

the similarity with each of them [211], thus making her feature vector depend on those of her

friends [156], or by accounting for the social ties heterogeneity [283].

In contrast, collaborative-enhanced social approaches implement a social-based framework

that falls back on CF when trusted users did not rate the target item. TrustWalker enhances

a social-based approach with item-based CF [154], and employs a random walk model that

first tries to exploit the social network by looking for the ratings on the target item at trusted

nodes (trust-based approach). Yet, as the random walk advances, if a rating on this item is not

found, the likelihood to return the rating of a similar item (item-based approach) increases.

TrustWalker acts in extreme settings as a pure SR approach when the random walk never stops

for similar items, and as pure item-based CF when the walk never starts (navigating the same

problem spectrum as us).

7.2. Problem Definition

Typically, a recommender task is to predict ratings for unseen items to users. To do so, a set

of items I , a set of users U , and a set of items Iu ⊆ I rated by each user u with a rating ru,i

on a Likert scale from 1 to 5 is considered. If the recommender system exploits the social ties

among users, for each user u a set of friends Fu is assumed. This chapter looks at the predictive

capability of social ties (SR) compared to the one of items or users rating similarity (CF) for

items recommendation.
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7.2.1. Comparison Framework

We conduct our study using a comparison framework that implements a recommendation tem-

plate under which, to make a recommendation for user u on target item i, two main steps are

performed3: (1) identify the set of similar users (respective items) with u (respective i) and

(2) compute weighted aggregates of their ratings on i (respectively from u) according to the

similarity with u (respective i). On top of it, we implement the main building blocks of SR

and CF as used for comparison in literature [11, 154, 155, 223, 181, 168]. Specifically, we

implement (a) item- and user-based CF variants as often used as reference point by previous

work [154, 223, 277, 181], and (b) a SR approach that aggregates the ratings similarly with CF,

yet, instead of deriving users affinity based on how similar they rated items in the past, it does

so based on their social ties. Next we describe each approach and motivate our choices.

Collaborative Filtering (CF) approaches are usually grouped in two main classes: neighborhood-

and model-based [78]. Model-based variants have received lot of attention as their accuracy was

considered superior, yet neighborhood-based CF, although simpler, remains competitive [70].

Further, they exploit different patterns in data, none of them consistently out-performing the

other: model-based CF is typically effective at estimating the overall model related to all items

simultaneously, while neighborhood-based CF better captures local associations in data [33].

This trait makes neighborhood-based CF suitable for our purpose to compare the predictive ca-

pability of interest affinity (inferred based on implicit similarity links as determined by CF) and

social affinity (computed based on explicit social links among users). Further, neighborhood-

based CF offers a simple and intuitive template for recommendation to easily implement a pure

SR-based approach on top of it and fairly compare the two under the same setting.

We use common variants of the two main types of neighborhood-based CF: user- and item-

based CF. Briefly, for each user u (respectively item i) a neighborhood UNu (respective INi) of

users (items) similar with u (respective i) is built and their ratings on the target item i (respective

from active user u) are aggregated as:

pu,i =

∑
v∈UNu

sim(u, v)rv,i∑
v∈UNu

sim(u, v)
(7.1)

for user-based CF, where sim(u, v) is the similarity between users u and v, as estimated by

the Pearson correlation of the ratings given by u and v on the same items4; respective, pu,i =

3As in neighborhood-based CF [132].
4Note that we also consider only positive correlations [154].
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∑
j∈INi

sim(i,j)ru,j
∑

j∈INi
sim(i,j) for item-based CF, where s(i, j) is the Pearson correlation of the ratings

received by i and j from the same users.

Social Recommendation (SR) In contrast to CF5, when the ratings received by target item i are

aggregated according to Equation (7.1), SR weights them based on the social affinity between

the active user (i.e., the user for which we want to make a prediction) and the users that have

rated item i in the past.

Social Affinity (relatedness) of two nodes in a social graph can be estimated using random walks

(RWs) [208], which have been used for both friend [24, 204] and item recommendations [332,

154, 102]. In short, for each prediction, we run RWs on the social graph that start at user u

needing a recommendation on item i, and stops when they either reach a user v that have rated

the target item i, or have performed a maximum number of steps kmax
6. We denote a RW

stopping condition with sv,i,k, which is true if i ∈ Iv or k >= kmax, meaning that the RW

stops at v. Then, the social affinity between u and user v that rated the target item i is the

probability to reach v using different paths and number of steps:

P (Xu,i = v) =

∑
k P (Xu,i,k = v)∑

w∈U
∑

k P (Xu,i,k = w)
, (7.2)

where the random variable Xu,i represents the nodes that rated item i and can be reached at any

step of the RW starting at node u, while Xu,i,k represents only the subset of nodes reachable at

step k:

P (Xu,i,k = v) =
∑
w∈U

P (Xu,i,k−1 = w)P (Xw = v) (7.3)

where P (Xu,i,0) = 1 and Xw the random variable to pick a friend of node w. For unweighted

graphs (as those used in our evaluation), we have:

P (Xw = v) =
1

|Fw| (7.4)

Thus, the probability to step on node v ∈ Fw at step k + 1 after being at node w at step k is:

5For brevity, when referring to both user-based and item-based CF, we use only CF.
6Set to 6 based on the “six-degree of separation” assumption [224] that most of the nodes are reachable within 6

hopes [154].
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P (Xu,i,k+1 = v|Xu,i,k = w, sw,i,k) = P (Xw = v) (7.5)

where Xu,i,k is the random variable for nodes that can be reached at step k when looking for

i, sw,i,k is the negation of sw,i,k, and P (Xui,k+1 = v|Xu,i,k = u, sw,i,k) = 0 to complete

the probability distribution. To also complete the specification of the probability distribution in

Equation (7.3), we define a final state ⊥, to which the RW goes when it terminates:

P (Xu,i,k =⊥) = 1−
∑
v∈U

P (Xu,i,k = v) (7.6)

To determine if we performed enough RWs to make an admissible prediction, after each RW

we compute the variance σ2 =
∑

j=1..T (rj−r)

T in the results of all the walks [154], where T is the

number of successful walks7, rj is the result returned by the j-th RW, and r is the mean of the

results return by the RWs. If the variance σ2 converges to a constant (i.e., the variance after j+1

walks varies with less than ε = 0.0001 from the variance after j walks), or the total number of

(successful and unsuccessful) walks reaches the maximum number of walks Tmax = 1000, we

stop from running more RWs. Then, to make a prediction, in Eq. (7.1), we replace the similarity

between active user u and user v which have rated item i with their relatedness in the social

network:

pu,i =
∑

{v∈U |i∈Rv}
P (Xu,i = v)rv,i (7.7)

7.3. Empirical Analysis

In this section we perform an extensive analysis that juxtaposes the SR (social affinity) and

CF (interest affinity) as predictors for item recommendation, structured in three parts. First, we

present a comprehensive characterization of the data sets. Second, we apply global metrics to

evaluate the recommendation strategies, and examine if they capture the performance variation

across various settings. Finally, we do a fine grained analysis of the impact of user and item

properties on the performance, organized as a set of questions about CF and SR properties.

These questions are largely inspired by admitted properties of CF or SR, such as, CF performs

better on users for which it has more information [116, 15, 45], the recommendation accuracy

7A random walk is successful if it encounters a user that have rated the target item.
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Data set Users Items Ratings Social Links Links Type

Ciao 12,375 99,762 284,086 237,350 direct

Epinions1 49,290 139,738 664,824 487,181 direct

Epinions2 22,166 296,277 922,267 355,813 direct

Epinions 132,000 755,760 13,668,319 841,372 direct

Flixster 786,936 48,794 8,196,077 7,058,819 symmetric

Douban 129,490 58,541 16,830,839 1,692,952 symmetric

Table 7.1.: Data sets Figures

decreases towards the long-tail items (i.e., less popular items) [296], or SRs are superior on cold

start users [154, 216].

7.3.1. Metrics and Experimental Setup

To evaluate the recommendation performance, we use the well-known leave one out strategy.

Specifically, we remove from the data set only the rating we want to predict and leave the other

ratings and social network unchanged. Then, we compare CF and SR along two popular metrics:

1. The coverage measures a recommendation strategy ability to make predictions, and it

is the number of ratings the system succeeded to make divided by the total number of

ratings that it tried to predict.

2. The Root Mean Square Error (RMSE) captures the average error between the predictions

and the real ratings, measuring the recommendation precision:

RMSE =

√
1

N

∑
(ru,i − pu,i)2 (7.8)

where N is the number of predictions, ru,i the real rating given by u to item i, while pu,i is the

prediction. Note that the smaller the RMSE is, the more precise the recommendations are.

Albeit the RMSE ability to gauge the performance for pervasive top-k recommendations is

debated [66], it best fits our purpose to measure performance shifts across classes of items/users.

The accuracy metrics deemed suitable to evaluate top-k performance, are biased towards the

performance on preferred items (i.e., high ratings) [133]. Moreover, many recommendation

systems that leverage the social ties optimize for RMSE [333] (as it is perhaps the most popular

metric [281]), making our analysis convenient to compare with.

Two approaches are used to report RMSE and coverage values for a set of users/items:
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(i) compute the RMSE (respectively coverage) over all the predictions to users (or for items)

in the set; or

(ii) compute the RMSE (respectively coverage) for each item/user separately and average the

results over all users (respectively items) in the set.

While the first measures the overall performance on estimating the ratings, the second weights

each user (respectively item) equally measuring how good the predictions are on average for

each user (respectively item) in the set. We measured both, yet, when the two variants lead to

similar conclusions we show only results with the second one; both are included otherwise.

Finally, when measuring how a certain user (respectively item) property impacts the results,

we group the users (respectively items) by logarithmically binning them regarding the property

value, and then compute the performance for each bin8.

7.3.2. Data sets Characterization

We conduct our analysis on 6 real world publicly available data sets including both ratings and

a social network (figures are summarized in Table 7.1):

Epinions is a popular product review site where people rate products and build lists of trusted

users whose reviews they find useful. We use two rating data sets from Epinions: one that is

collected by the authors of [215] around 2006 (noted epinions1), and one that is collected in

May 2011 by the authors of [302] (noted epinions2). In addition to product ratings, in Epinions,

users can also rate product reviews. We also use a data set, made available by Epinions.com to

the authors of [215] containing ratings on product reviews, instead of ratings on products (noted

epinions). In all data sets the ratings are on a scale from 1 to 5.

Douban is a Chinese product review site that represents one of the largest online communities

in China. As in Epinions, users rate and review products in order to receive recommendations.

In addition, at the date of crawling, it provided a Facebook-like social networking service [211].

Ciao defines itself as a multi-million-strong online community in which users critically review

and rate millions of products. It provides the same functionality as Epinions (i.e., users can both

rate products and indicate the trusted users) [301].

Flixster is a large social movie rating service that allows users to create Facebook-like friend-

ship relations and share ratings [156], which are from 0.5 to 5 (with a step of 0.5). To ensure

8We use logarithmic binning (in base 4) to account for the fact that some values in the degree, popularity, or activity

distributions are frequent while others are not. A linear binning leads to bins with few or no points.

131



7. Methods Assessment: A Study of Item Recommendation

Data set Ratings Per User Ratings Per Item Avg. Degree Mean Rating Median Rating

Ciao 22.9 2.8 19.1 4.16 4

Epinions1 13.4 4.7 9.8 3.99 4

Epinions2 41.6 3.1 16 3.97 4

Epinions 103.5 18.0 6.3 4.67 5
Flixster 10.4 167.9 8.9 3.8 4

Douban 129.9 287.5 13.0 3.84 4

Table 7.2.: Data set Statistics. Bold marks the highest value per column, while italic the lowest.

Figure 7.1.: Distribution of ratings as function of: (a) user activity; (b) item popularity; (c) user

degree; (d) rating value

uniformity across the analyzed data sets, we round the ratings to the next integer so as to obtain

ratings on a 1 to 5 scale.

Data Statistics. We want to understand the properties of the data sets we analyze, the resem-

blance among them, as they might explain the performance variations across them. Table 7.2

highlights basic statistics for each data set.

Rating Distributions. Figure 7.1 shows the rating distributions across user and item properties,

and the rating value. In Figure 7.1(a) we notice similar patterns across data sets with only little

variation (for larger data sets, the level of user activity at which the peak number of ratings is

Figure 7.2.: The distribution of items as a function of (a) item popularity and (b) average rating

per item, and the distribution of users as a function of (c) user activity, (d) user

(out-)degree and (e) average rating per user.
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produced is shifted towards higher ranges). In contrast, the rating distribution according to item

popularity, Figure 7.1(b), varies greatly: while in some data sets (ciao, epinions1, epinions2)

the highest fraction of ratings is given to unpopular items, in others (the largest ones) this is

accounted for popular items. Figure 7.1(c) also shows that while in flixster and epinions most

ratings are given by moderately social connected users, in other data sets a higher number of

ratings is credited to lower degree users. Looking at rating distributions according to the rating

value, Figure 7.1(d), we see that in all data sets the values are skewed towards higher ranges

(peaking around 5).

Item Distributions. We observe similar patterns across all data sets: Figure 7.2(a) illustrates

that with only one exception (epinions) the cold start items (with only few ratings) represent

a significant fraction of all items. Figure 7.2(b) shows that in all data sets most of the items

received on average a rating of 3 or 4.

User Distributions. SR is believed to address cold start users, as it does not require them to

rate items for making predictions, but only to be connected in the social network. Given that

in some data sets the number of cold start users is significant (roughly 50% [154]), improving

on this set of users might significantly impact the overall performance. Thus, on average such

approaches were found to outperform CF [154, 216]. Yet, when the percentage of cold start

users is not significant, this might not be the case. Figure 7.2(c) shows that while in some data

sets (epinions, flixster) cold start users are a significant percentage, this is clearly not the case in

others (douban, ciao). Additionally, regardless of their fraction, cold start users always produce

a minor fraction of ratings (see Figure 7.1). In Figure 7.2(d), we notice that, except flixster, the

number of low degree users is larger than the number of cold start users, which in turn might

affect SR overall performance. Finally, Figure 7.2(e) shows that, on average, users tend to give

higher rating values.

Correlations. We also checked the correlation among item and user properties (item popularity,

user activity and degree, and the average rating received by an item or given by a user). Given

that, in general, we found low or no correlation, we report only on statistically significant (p <

0.01) moderate Pearson correlations (|r| ≥ 0.2). We found moderate and positive correlations

among users degree and their level of activity in ciao (r = 0.59), epinions1 (r = 0.45) and

epinions(r = 0.36). In flixster (r = 0.43), douban (r = 0.35) and epinions (r = 0.30) there is

a positive correlation between items popularity and the ratings they got, i.e, popular items tend

to obtain higher ratings. Item popularity also correlates negatively with users level of activity

in flixster and douban (r = −0.20 in both data sets), i.e., active users are more inclined to rate

unpopular items. While in douban there is a negative correlation (r = −0.29) between users
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Data set User CF Item CF Social

Ciao 1.144 (0.410) 1.285 (0.318) 1.252 (0.626)

Epinions1 1.186 (0.512) 1.428 (0.463) 1.362 (0.663)

Epinions2 1.164 (0.483) 1.361 (0.395) 1.406 (0.365)

Epinions 0.466 (0.930) 0.602 (0.579) 0.559 (0.951)

Flixster 1.013 (0.969) 0.889 (0.991) 1.349 (0.985)

Douban 0.784 (0.996) 0.809 (0.997) 1.037 (0.894)

Table 7.3.: Overall performance. In each cell we report RMSE (Coverage) computed over all

the ratings in the data set. Bold highlights the best value on each row.

level of activity and the ratings they give on average, indicating that active users are more likely

to give lower ratings; in epinions popular items tend to get higher ratings (r = 0.31).

We will see in the next sections how these varying data properties explain the different per-

formance numbers obtained when aggregating the results differently (e.g., user-oriented vs.

item-oriented evaluation) within and across data sets.

7.3.3. Overall Performance Characterization

A common practice in recommender systems evaluation is to show how their performance

varies with approach-dependent parameters. Yet, even when there are correlations between the

parameter values and performance level, it is difficult to know, for instance, if the improve-

ments hold for the entire population, or only for some subgroups. Thus, we want to observe if

there is a trivial relationship between the experimental results obtained through globally com-

puted metrics that summarize the performance, typically used to evaluate recommendation sys-

tems [154, 156, 223, 283], and the averaged performance at user (respectively item) level.

Table 7.3 reports the globally computed metrics (rating-oriented evaluation) per data set and

approach. For error rates, with only one exception (i.e., flixster), user-based CF performs best

across all the data sets. In terms of coverage, there is no clear winner: SR performs best for

ciao, epinions1 and epinions, while user-based CF for douban and epinions2, and item-based

CF for flixster. Next, we check if these results are also confirmed by the user (respectively

item)-oriented evaluations (§7.3.1) which measures how well an approach does on average per

user (respectively item). In Figure 7.3 the boxplots show the shape of the average performance

distribution for users (respectively items), its central value, and variability.

User-oriented evaluation. Figure 7.3(a) shows the per-user performance variation across data

sets. Though it mostly confirms the overall results (in terms of winners) for most data sets,

there are exceptions in which SR, respectively item-CF, fares better than the globally computed
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(a) Per-user distributions

(b) Per-item distributions

Figure 7.3.: Results Distribution: The boxplots divide the data, except outliers (the blue lines),

in four equal buckets. A data point displays the performance on a particular user

(respectively item). The redline splitting the boxplot is the median, while the star is

the average performance (also plotted above each boxplot).
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Figure 7.4.: Performance as a function of user activity: (top) average RMSE per user; (bottom)

average coverage per user.

metrics indicate in Table 7.3: e.g., the coverage on flixster, where the fraction of unsocial users

is lower than that of cold start users, and RMSE on epinions, where there is a higher fraction of

items with similar ratings, than of users giving similar ratings.

Item-oriented evaluation. Similarly, barring the coverage on flixster and douban, Figure 7.3(b)

also confirms (in terms of winners) the figures in Table 7.3. Yet, we notice that except epinions

and flixster, in all the other data sets both the distributions and the average coverage values

are significantly shifted towards lower ranges regarding the user-oriented evaluation, which is

explained in part by the much higher fraction of unpopular items than of cold start users that

these data sets exhibit.

This demonstrates that it is difficult to rely on global metrics to assess or explain a given rec-

ommender performance, a finer granularity has to be applied; and that indeed no general con-

clusion can be drawn regarding the relative superiority of a given recommendation method over

another, not only across data sets but also within each data set.

7.3.4. In-Depth Performance Characterization

We aim to understand the benefit of each approach under a variety of settings. In this regard, we

address a set of questions about the properties of CF and SR, some of which are well embedded

in the conventional wisdom:
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Figure 7.5.: Performance as a function of item popularity: (top) average RMSE per item; (bot-

tom) average coverage per item.

Does CF fare better for users (respectively items) with more ratings? The belief is that CF

does better when a user has rated more items [116, 45]. To test it, we analyze how CF performs

as users are more active (have rated more items). Figure 7.4 shows that users’ level of activity

impacts the ability to make predictions (the coverage) similarly across all approaches: being

more active helps only until some threshold after which rating more items either does not help

(epinions, douban) or can even be harmful (epinions2). Further, while rating more items tends to

help user-based CF to make precise prediction (in epinions and flixster after slightly improving

for a while, the error increases again), item-based CF has a more inconsistent pattern. Looking

at the relative performance of CF regarding SR (barring cold start users, i.e., the first bin on

the log4 scale), we notice that users level of activity impacts user-based CF and SR similarly

in terms of both coverage and RMSE. Exceptions are the coverage results on the data sets that

exhibit no correlation among users social degree and their level of activity (douban, flixter).

As with more ratings per user, the belief is that more ratings per item help CF [296]. To chal-

lenge it, we look how CF performs with the number of ratings per item. Figure 7.5 shows that

the average coverage per item is improving as items are more popular only until some threshold

when they plateau. In addition, as a rule-of-thumb we also notice that items with about over 26

items tend attain a coverage of 80% or more. In contrast, for ciao, epinions1, epinions2 (data

sets with a small number of ratings per item, Table 7.2) the predictions are less precise as the

items are more popular, invalidating the belief. Checking the relative performance of CF re-

garding SR, we notice that more ratings per item helps CF to increase its precision regarding

SR. The only exception is epinions (to easily spot the patterns, follow on y-axis the distance
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Figure 7.6.: Performance as a function of node degree: (top) average RMSE per user; (bottom)

average coverage per user.

between points corresponding to the same bin but with distinct approaches).

Does SR fare better for cold start users? The belief is that SR deals better with cold start

users [154] (with less than 5 items rated [117]) as it only requires them to be connected to other

users to make predictions. Indeed, Figure 7.4 shows that SR achieves better coverage for these

users (leftmost bins) across data sets. Yet, this is not always the case when it comes to precision

(RMSE). For instance, we observe that for flixster and douban (when the social ties stem from

friendship), CF attains a better precision for all users, including cold start ones.

Does SR fare better for users with more social connections? Intuitively, more social infor-

mation available should help SR. To check this, we study how SR performs across users with

various social degrees. Figure 7.6 shows that higher degrees help improve the coverage only

until users are moderately connected (have at least 5 connections), after which linking to more

users seems to bring little or no benefit for SR, even declining on ciao. Neither SR’s precision

improves as users are more socially active: it either slightly decreases, or plateau. This means

that having too many friends might also introduce noise. This hints that many social ties might

not reflect as much friendship, similarity or trust. However, on most data sets higher degrees

tend to have a weak to no impact on SR’s precision. Further, as with the level of activity, bar-

ring the low degree users, the social degree impacts user-based CF and SR in a similar way, in

particular for those data sets in which the degree correlates with the level of activity.

Is CF doing better on low degree nodes? Since CF does not leverage the social links to make

predictions, it should not be affected by their absence, and, thus, should perform better on
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unsocial (low-degree) users. Yet, Figure 7.6 shows that CF succeeds to obtain a better coverage

on unsocial users only for douban and epinions2. For RMSE, while on some data sets CF does

better on unsocial users, when there is a correlation between user degrees and how many items

they rate (ciao, epinions1, and epinions), it performs comparable with SR.

Is the Precision of SR Lower Relative to CF on Facebook-like Networks ? The process of

creating connections primarily based on “plain” friendship (Facebook-like) does not necessarily

correlate with one’s opinions as it is orthogonal to a product recommendation task. Yet, when

the basis of forming connections is to connect with people whose opinions one shares, there

might be more agreement in how users rate the same items. Indeed, this distinction is clearly

visible in our results (Figure 6 to 8): while SR fares comparable with CF in terms of RMSE in

Epinions data sets and ciao, in Facebook-like flixster and douban CF significantly outperforms

SR. In addition, being more socially active has little to no impact on the results obtained for

flixster and douban (Figure 7.6). Thus, this indicates that the underlying nature of the network

and whether or not the connections are related or orthogonal to the recommendation task is an

important factor as well.

Is the performance independent of users selectiveness or items likeability? Only few studies

hint at the relation between user selectiveness [217] or items likeability and recommendation

performance. Yet, in Figure 7.7 we notice consistent patterns across data sets, in particular,

for RMSE. In all data sets item-based CF is less precise when items are either liked (received

high ratings), or disliked (received low ratings), while SR and user-based CF are less precise

for users that are either very selective (giving mostly low ratings) or indulgent (offering mostly

high ratings). Also note how similarly both the user and item average rating impacts the pre-

cision across all data sets (i.e., leading to similar curves for all data sets). This is surprising as

it indicates that the users (respectively items) average rating is predictive for the recommenda-

tion approach precision. It is also worth noting that user-based CF and SR precision (although

with slightly different values) follow almost identical curves. Yet, as Figure 7.7 illustrates, for

coverage the patterns are not consistent across all data sets.

7.4. Conclusions

We conducted an in-depth empirical analysis on six publicly available data sets to study the

respective merits of the interest affinity, as derived by CF, and the social affinity, reflecting

how well connected users are in the social graph, for items recommendations. We focused

on the building blocks of the analyzed strategies, without aiming to exhaustively inspect all
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Figure 7.7.: Performance as a function of average rating value per item and per user.
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possible implementations, as we argue that their understanding can better guide more complex

deployments. Our study conveys that the level of user activity, item popularity or the density

and nature of the underlying social network are as many characteristics that can impact the

performance of recommendation systems. One needs to understand the data set demographics

and optimize the performance based on the specifics of each application. We make a case for

hybrid approaches, which dynamically adapt as the system evolves and the properties of user

and item change over time.

7.4.1. Reproducibility

As we emphasised earlier, this case study is based on 6 publicly available data sets (see [215,

302, 211, 301, 156] for more details about the data sets), implements basic recommendation

approaches and relies on popular evaluation metrics. This enables the reproducibility of our

study, and also makes it convenient to contrast with both past and future related studies.
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“There are a lot of small data problems that occur in big data. They don’t disappear

because you’ve got lots of the stuff. They get worse.”

—Prof. David Spiegelhalter, 2014, quoted in [130]

8.1. Retrospective

Social data promise to provide us with many fascinating insights about human phenomena [194]

and exciting applications [173, 219]. Unfortunately, there are limits to what can be discerned

from social data about real-world phenomena that have yet to be addressed. In this thesis we

examine four instances of such limits that demonstrate the need for more efforts in defining

common standards to collect and analyze social data, but also to devise and evaluate the methods

that work with it.

Social Media Biases. First, we have devised a methodology for comparing news agendas that

allowed us to quantify the biases in the coverage of domain-specific news events in social and

mainstream media. We showed that social media significantly deviates from mainstream media

and tends to focus on actions by individuals, original investigative journalism, and legal actions

involving governments. It typically pays more attention than mainstream media to news events

considered ordinary, predictable, and of low-magnitude. Thus, while there is some overlap be-

tween the two type media, social media (or at least Twitter) is far from being a good proxy for

online mainstream news media.

Data Collection Biases. Second, we have performed an in-depth analysis of 26 data sets of

social media messages posted during multiple crisis events. Our results suggest that some in-

trinsic characteristics of each event (e.g. being instantaneous or progressive) tend to produce

consistent effects on the types of information available in the messages and their sources. How-

ever, we also uncover substantial variability across data sets (e.g. with the number of eyewitness

accounts varying from over 50% during one event to less than 1% during another), revealing
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pitfalls related to the generalization of findings from one data set to another, even across those

data sets that are seemingly similar. Our study makes a case for running analyses and evaluate

frameworks or methods on multiple data sets.

Leveraging Domain Knowledge to Improve Data Collection. Further, we have shown that

using a generic, domain-specific lexicon to collect social media messages during domain-specific

events leads to collections with higher recall than obtained with crisis-specific keywords manu-

ally chosen by domain experts, while it also better preserves the original distribution of message

types. The impact of these results goes beyond an algorithmic understanding. We also show that

the amount of data that it is currently mined represents only a fraction of the relevant data.

Methods Evaluation. Finally, we conducted an in-depth empirical analysis on multiple data

sets to study the respective merits of different social cues (explicit social links vs. implicit

interest affinity) to aid item recommendations. We show that one needs to understand the data

set demographics and optimize the performance based on each application specificities, as the

performance of different recommendation strategies varies not only across data sets, but also

within each data set, across different classes of users or items. Thus, our results make a case

for more extensive, fine-grained evaluations, not only across data sets, but also across data

demographics.

8.2. Prospective

The research debating the challenges of relying on online social data to model human behavior

has been more focused on asking questions rather than trying to answer them. In Chapter 2, we

conducted a comprehensive survey that focuses on a variety of the challenges from issues with

the current working data sets to the employed methods to capture and leverage these data sets,

as well as ethical aspects, rather than reviewing existing solutions or tentatives to addressing

them (if they exists). We believe that reviewing existing solutions is an equally important in-

vestigation to pursue to further guide the community towards the most pressing issues that need

to be addressed. Among the all the surveyed issues, below we highlight a few that we consider

important to be addressed:

Ethics, Standards, and Algorithms Discrimination. First, the ethical issues when working

with such data are often overlooked [342]. Consistent standards across the community about

how to handle such data are needed: e.g. when and how can we disclose user identifiers in

papers? what about disclosing their social media posts as they are?
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The way in which we evaluate and validate methods and observations is also important. Ruths

and Pfeffer [274] put together an evaluation guideline to help reduce biased and flows in social

data including showing results on multiple platforms, distinct data sets from the same and dif-

ferent platforms. Yet, as we discussed in Chapter 7, especially when looking at a problem that is

confined within a certain context, looking at the performance variation across data demograph-

ics is also necessary. Thus, effort should be put in developing minimum evaluation requirements

per classes of problems.

In the same context, there is a need to further scrutinize the implications of algorithmic de-

cisions across applications and types of data. First, not all mistakes are equal. Thus, when

choosing among methods that show different performance trade-offs, one should consider the

cost of various types of mistakes that might occur—automatically classifying someone as un-

fitted for a job due unintentional racial profiling has much grave consequences, than the cost of

interviewing more candidates. In [32], Barocas and Selbst discuss how various design choices

at different steps in the analysis pipeline (see Chapter 3 for an overview) can lead to discrim-

inatory decisions. Thus, future research should carefully investigate the differences, especially

the errors, in the results of different methodological choices .

Social Issues. Further, in spite of existing limitations, we believe that if handled with care

online social data can be instrumental for policy makers and advocacy groups as it can help

them estimate both existing biases towards protected classes (typically including minorities), as

well as the impact of various relevant policies, programmes or campaigns.

For instance, while the growing number of discussions about minority (a group that is sub-

ordinate to a more dominant group in society) issues—including gender [3], income [1], or

race [4]—is good news, empirical evidence suggests that they are held mainly among the dis-

criminated group: women dominate the debate on gender [5], while African-Americans domi-

nate the one on race [2]. This suggests that, although social media has led to a paradigm shift

for advocacy by increasing the effectiveness, the speed and the outreach of social campaigns,

many—even the online campaigns—still fail to reach far beyond the communities for which

they advocate. Knowing the extent to which each stakeholder group contributes to the debate is

helpful in learning how to alter the message to appeal to them. Yet, although important, studies

that look at various online social data to understand the public opinion and the different nar-

ratives around minority groups issues across stakeholders are scant. We are interested in this

problem, and to fill this gap, we have started efforts in this direction [250].

Parting Thoughts. Eliminating all data biases, noise or other limitations is unlikely, and

sometimes even undesirable. Additionally, the solutions for various limitations might pull in
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8. Conclusions

opposite directions (e.g. to solve privacy related issues one might need to compromise various

performance metrics). Yet, as mentioned earlier, not all mistakes are equal. It is, thus, important

to assess and categorize existing limitations based on their effects, in order to understand what

type of trade-offs should be made.
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A.1. Statistical Tests for Terms

For each term t we compute the following contingency table:

related not related

t n(t, rel) n(t,¬ rel)

¬ t n(¬ t, rel) n(¬ t,¬ rel)

where n(t, c) is the number of tweets belonging to class c in which term t appears, n(¬ t, rel)

the number of tweets in which term t does not appear and c ∈ {rel,¬ rel}. Then, similarly with

[163], we use two popular statistical measures to estimate how strong the association between

a term and the crisis-related tweets is (the discriminative score): Chi-square (χ2) and Pointwise

Mutual Information (PMI).

χ2-based crisis score. The statistical measure χ2 tests whether a term t occurrence is indepen-

dent of the tweet being about a disaster or not; and is defined as follows:

χ2 =
∑

x∈{t,¬ t}

∑
c∈{rel,¬ rel}

(n(x, c)− E[n(x, c)])2

E[n(x, c)]

where E[n(x, c)] is the expected value for n(x, c).

Although χ2 estimates the discriminative power of a term t towards one of the classes, it does

not indicate if t is discriminative for the crisis-related tweets. So we ignore the χ2 when t

appears more often in the non-crisis-related tweets and define the crisis score as follows:

csχ2(t) =

⎧⎨
⎩
χ2 if n(t, rel) > n(t,¬ rel)

0 otherwise

PMI-based crisis score. PMI measure the relatedness between term t and a certain class c and
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it is defined as [59]:

PMI(t, c) = log2
P (t, c)

P (t)P (c)

where P (t, c) is the joint probability of t and c, and P (t) and P (c) are the marginal probability

of t and c.

Even if PMI measures how strongly associated term t and class c are, it does not account for how

strongly associated t and the other class are. So we compute the crisis score as the difference

between the association strength with crisis-related tweets and the association strength with

non-crisis-related tweets [163]:

csPMI(t) = PMI(t, rel)− PMI(t,¬ rel) = log2
p(t | rel)
p(t |¬ rel)

where p(t | rel) and p(t |¬ rel) are the probabilities of t to appear in crisis-related, respectively

non-crisis-related tweets:

p(t | rel) = n(t, rel)

n(t, rel) + n(¬ t, rel)

p(t |¬ rel) =
n(t,¬ rel)

n(t,¬ rel) + n(¬ t,¬ rel)

This yields positive scores when t has a higher probability of appearing in crisis tweets than in

non-crisis tweets, and negative otherwise. Therefore, we consider only positive values.

A.2. Message Types Categorization

We label crisis-relevant tweets distribution along two main categorizations: information type,

and information source. For each, we present workers a tweet and ask them to label it with the

likeliest category (see Figure A.1). For quality control, one of every 10 tweets presented to a

worker was labeled by one of the authors and was chosen to be an obvious case.
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Indicate if the tweet is informative for decision makers and emergency responders:

“RT @Boston_Police: Despite various reports, there has not been an arrest ”

Choose the best one: The tweet is . . .

A. Informative about negative consequences of the bombings

B. Informative about donations or volunteering

C. Informative about advice, warnings and/or preparation

D. Other informative messages related to the bombings

E. Not informative: messages of gratitude, prayer, jokes, etc.

F. Not understandable because it is not readable, too short, etc.

Indicate the information source for tweets posted during a crisis situation:

“family & friends are bruised & slightly damaged but ALIVE. now i can rest..”
Choose the best one: This information seems to come from . . .

A. News organizations or journalists: TV, radio, news organizations, or journalists

B. Eyewitness: people directly witnessing the event

C. Government: local or national administration departments

D. Non-governmental organizations (not for profit)

E. Companies, business, or for-profit corporations (except news organizations)

F. Other sources: e.g, friends or relatives of eyewitnesses

G. Not sure

Figure A.1.: Crowd-tasks for categorizing tweets according to informativeness and type (top),

and source (bottom).

Table A.1.: Abbreviated GDELT themes and taxonomies used to select articles covering climate

change subjects.

Bootstrap Theme: ENV_CLIMATECHANGE

Themes (22): NATURAL_DISASTER_: -HURRICANES, -STORMS, -BUSHFIRE, -BUSHFIRES, -BUSH_FIRE, -

BUSH_FIRES, -BURIED_HOMES, -CYCLONES, -DESERTIFICATION, -INTENSE_RAINFALL, -EXTREME_WEATHER,

WIND_STORMS, -TROPICAL_STORMS, -FOREST_BURNED, -VIOLENT_TORNADOES, -DROUGHTS;

ENV_: -OVERFISH, -DEFORESTATION, -CARBONCAPTURE; MOVEMENT_ENVIRONMENTAL, MAN-

MADE_DISASTER_DISRUPTION_OF_POWER, SOC_MASSMIGRATION

Taxonomies (17): TAX_FNCACT_: -CLIMATOLOGIST, -EARTH_SCIENTIST, -ENVIRONMENTAL_SCIENTIST, -

ATMOSPHERIC_SCIENTIST, -WEATHERCASTER, -OIL_BARONS, -OCEANOGRAPHER, -OCEANOGRAPHERS, -

SCRUTINEER; -ECOLOGIST; TAX_ETHNICITY_: -INUPIAT, -CHUKCHI, -KIRIBATIS, -KIRIBATI, -MARSHALLESE, -

CHIPEWYAN; TAX_POLITICAL_PARTY_ECOLOGIST_GREENS

A.3. Climate Change Themes and Keywords

• Table A.1 containing the list of themes and taxonomies used to locate climate change

related news in GDELT.

• Table A.2 containing the list of keywords used to collect Twitter data about climate

change.
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Table A.2.: Keywords used for sampling Twitter data

Bootstrap terms (9): climate change, global warming, climatechange, globalwarming, climate_change, global_warming, climate-

change, global-warming, #climate

Terms (230): algore, australian climate, #peoplesclimate climate, climate makes, #emissions, climate rally, climate fighting, cool-

ing warming, climate forward, climate major, climate stand, climate least, caused climate, climate going, climate economic, cli-

mate continues, climate rising, climate takes, climate warning, climate young, climate national, climate fracking, climate comes,

climate far, michaelemann, caused warming, climate important, climate renewable, climate mitigate, climate david, climate work-

ing, climate environmental, climate james, #ecology, serious warming, #climate2014, climate cooling, breaking climate, methane,

climate dangerous, climate international, climate give, climate leading, climate getting, #pjnet climate, climate making, climate

daily, co2, climate planning, actually climate, climate explains, climate united, freezing warming, called climate, climate flood-

ing, climate pretty, climate tackling, climate likely, climate driving, climate high, climate said, climate never, climate threatened,

climate denying, climate taking, changing climate, climate left, climate growing, made warming, climate interesting, climate

saying, #adaptation, #climatemarch, climate critical, climate ignoring, climate linked, climate ready, climate military, #acton-

climate climate, affecting climate, climate strong, abrupt climate, climate cut, climate told, emissions, #cop19, climate finally,

climate keep, climate free, #climateaction, climate natural, causing climate, climate warming, climate talking, climate put, cli-

mate recent, climate late, climate coming, climate thought, climate paul, claims climate, climate huge, climate needed, climate

political, according climate, addressing climate, #green climate, climate little, climate concerned, climate seriously, bring climate,

climate serious, climate seen, climate sustainable, climate public, climate made, climate flat, arctic climate, change international,

change sustainable, climateprogress, change environmental, #unfccc, un_climatetalks, change denying, #green change, polluters,

cfigueres, change fracking, catastrophic change, change natural, #eu2030, change renewable, #peoplesclimate change, manmade,

climatereality, change warning, australian change, #co2, #actonclimate change, ghg, arctic change, change tackling, billmckibben,

peoples_climate, dana1981, ginaepa, permafrost, #oceans, nrdc, acidification ocean, epa plants, arctic ice, epa plan, obama plants,

assessment national, gas greenhouse, gas study, carbon, epa obama, rise sea, arctic sea, antarctic ice, ipcc report, droughts, march

nyc, ice melting, caused humans, glaciers, #peoplesclimate people, ecowatch, ice melt, epa rule, ice sea, #weather hurricane, gases

greenhouse, fossil fuel, rising sea, emission, extreme weather, #auspol #nuclear, #pollution, level rise, events weather, ice scientists,

level sea, 400 ppm, #nuclear #thorium, #ipcc report, #peoplesclimate action, #actonclimate action, ice sheet, events extreme, #epa,

400ppm, #peoplesclimate march, epa, #auspol #thorium, pollution, antarctic collapse, ecology, greenland sheet, #peoplesclimate

nyc, #forests, fossil subsidies, caps melting, #actonclimate president, fossil fuels, arctic loss, antarctic sheet, converting oxygen,

dioxide, gina mccarthy, fracking study, antarctic ship, #acidification, hansen james, nanotubes, guardianeco, monoxide, #actoncli-

mate plan, clean plan, pollutants, antarctic scientists, arctic scientists, rising seas, divestment fossil, greg hunt, agw, environmental

protection
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A.4. News Values Annotation

Instructions given to crowdsource annotators were the following:

Help researchers to categorize Climate Change related events that happen in 2013 and

2014. These events have received a good deal of attention in Online News Media, on Twit-

ter, or both. Please follow the provided links, and categorize the events according to the

following dimensions:

We create several tasks for this purpose. The question and examples provided to annotators are

the following.

Negativity: is this bad news?

A. This is bad news, e.g. Sinkhole swallows resort in Florida
B. This is neutral news, e.g. UN Climate Change Conference in Bonn
C. This is good news, e.g. Fresh water reserves found under ocean floor

Conflict: are there two persons or groups in antagonism?

A. This depicts a conflict between two opposing persons/groups, e.g. EPA fines Shell for Arctic Air
Violations

B. This does not depict a conflict between two opposing persons/groups, e.g. Yarnell Hill Fire

Extraordinary:1 is this something out of the ordinary or rare, or is it something that normally happens?

A. This is an ordinary event, e.g. Texas family to install solar panels
B. This is an extraordinary event, e.g. Epic Drought in West is Literally Moving Mountains

Predictability: could a member of the public have known this was going to happen, or not?

A. A member of the public could not have know this will happen, e.g. Google buys solar-powered drone
maker Titan Aerospace

B. A member of the public could have know this will happen, e.g. People March for Climate in NYC

Magnitude: does this event affects a large number of people, has important consequences, or is of global

interest (high magnitude); or it is hyper-local with no or limited consequences and involves a low number

of people (low magnitude)?

1This news value is referred to in the literature as “unexpectedness,” but to avoid confusion we avoid the term in

this paper as one common meaning of the word “unexpected” is “unpredictable,” which can be confused with a

different news value.
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A. The magnitude of this event is high, e.g. Air Pollution Linked to 1.2 Million Deaths in China
B. The magnitude of this event is moderate, e.g. California bans plastic bags, legislation signed
C. The magnitude of this event is low, e.g. FoxNews tells scientist not to talk about climate change

Reference to elite persons: does it involve someone rich, powerful or famous?

A. This involves someone rich, powerful, or famous, e.g. Obama’s Climate Change plan in Congress
B. This does not involve someone rich, powerful, or famous, e.g. Species disappearing far faster than

before

A.5. Crisis Data Sets Characteristics

• Table A.3 containing the list of keywords used to collect data from each crisis.

• Tables A.4 and A.5 depicting temporal distributions of tweets on each crisis for each type, and for

each source.
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Table A.3.: List of keywords used to collect data for each of the crises in this study.

Year Crisis Name Keywords #Kw

2012 Italy earthquakes earthquake italy; quake italy; #modena; #sanfelice; san felice; modena terremoto; modena earth-
quake; modena quake; #norditalia; terremoto italia; #terremoto;

11

2012 Colorado wildfires #cofire; #boulderfire; #colorado; #wildfire; #waldocanyonfire; #waldofire; #waldocanyon;
colorado springs; #highparkfire; #flagstafffire; #littlesandfire; #treasurefire; #statelinefire;
#springerfire; #lastchancefire; #fourmilefire; #4milefire; #fourmilecanyonfire; #boulderfire;
#bisonfire; colorado wildfire; colorado wildfires; colorado fire; colorado fires; boulder fire; boul-
der fires; boulder wildfires; boulder wildfires;

28

2012 Philipinnes Floods #rescueph; #reliefph; #floodsph; #prayforthephilippine; manila flood; manila floods; philippine
floods; philippine flood; #floodph; #phalert; #habagat;

11

2012 Venezuela refinery explosion paraguana refinery; venezuela refinery; paraguaná refinery; #paraguana; #paraguaná; amuay re-
finery; venezuelan refinery; #amuay; paraguaná refinería; paraguana refineria; amuay refineria;
amuay refinería; #falcon; #falcón; refinería venezuela; refineria venezuela; refinería paraguana;

17

2012 Costa Rica earthquake #temblorcr; #terremotocr; #costarica; #terremoto; costa rica quake; costa rica earthquake; costa
rica temblor; costa rica terremoto; #creq; costa rican quake; costa rican earthquake; #quake;
#earthquake;

13

2012 Guatemala earthquake #sismo; #guatemala; tiemblaenguate; temblorgt; terremotogt; temblor guatemala; terremoto
guatemala; sismo guatemala; earthquake guatemala; quake guatemala; #sanmarcos; #terremo-
toguatemala; #tremorguatemala;

13

2012 Typhoon Pablo #pabloph; #reliefph; #bopha; #typhoonpablo; #typhoonbopha; typhoon bopha; typhoon pablo;
#bopha; #pablo; #typhoon; #walangpasok; #mindanao; #visayas; #hinatuan; #rescueph;
#pablosafetytips; #cdo; #strongerph;

18

2013 Brazil nightclub fire #forçasantamaria; boate kiss; #boatekiss; #santamaria; #tragédiaemsm; #tragediaemsm; #todos-
desejamforçasasantamaria; #brazilfire; #brazil fire; brazil nightclub; #brasildesejaforçasasviti-
masdesantamaria; #prayforsantamaria; #prayforbrazil;

13

2013 Queensland Floods #qldflood; #bigwet; queensland flood; australia flood; #qldfloods; queensland floods; australia
floods; queensland flooding; qld flood; qld floods; qld flooding; australia flooding;

12

2013 Russian Meteor #метеорит; #meteor; #meteorite; russia meteor; russian meteor; #russianmeteor;
#chelyabinsk; #челябинск;

8

2013 Boston Bombings boston explosion; boston explosions; boston blast; boston blasts; boston tragedies; boston
tragedy; prayforboston; boston attack; boston attacks; boston terrorist; boston terrorists; boston
tragic; bostonmarathon; boston marathon; boston explosive; boston bomb; boston bombing;
dzhokhar; tsarnaev; marathon attack; marathon explosion; marathon explosions; marathon
tragedies; marathon tragedy; marathon blasts; marathon blast; marathon attacks; marathon
bomb; marathon bombing; marathon explosive;

30

2013 Savar building collapse #savar; #bangladesh; bangladesh collapse; #ranaplaza; savar bangladesh; savar collapse; rana
plaza;

7

2013 West Texas Explosion #westexplosion; west explosion; waco explosion; texas explosion; texas fertilizer; prayfortexas;
prayforwest; waco tx; west tx; west texas; waco texas; #west; #waco; westexplosion; west ex-
plosion; waco explosion; tx explosion; fertilizer explosion; prayfortexas; prayforwest; westtx;
wacotx; west texas; waco texas; west tx; waco tx; texas fertilizer; west fertilizer; waco fertilizer;

29

2013 Alberta Floods alberta flood; #abflood; canada flood; alberta flooding; alberta floods; canada flooding; canada
floods; #yycflood; #yycfloods; #yycflooding; calgary flood; calgary flooding; calgary floods;

13

2013 Singapore Haze #sghaze; singapore haze; #hazyday; blamethehaze; mustbehaze; #sg #haze; singapore #hazy; 7
2013 Lac-Megantic train crash #lacmegantic; #lacmégantic; #lacmég; #lacmeg; #tragedielacmegantic; #tragédielacmégantic;

#mégantic; lac mégantic; lac megantic; quebec train explosion; quebec train derailment; quebec
train crash; quebec oil train; canada train oil; canada train oil; canadian train oil;

16

2013 Spain train crash compostela train; spain train; tren compostela; españa tren; #santiagocompostela; #accidente-
santiago;

6

2013 Manila Floods baha manila; #maringph; #rescueph; #reliefph; #floodsph; #prayforthephilippine; manila flood;
manila floods; philippine floods; philippine flood; #floodph; #phalert; #safenow; #trafficph;
#habagat; #maring; #maringupdates;

17

2013 Colorado Floods #cofloodrelief; colorado floods; colorado flooding; #coloradoflood; #coflood; #opcoflood;
#boulderflood; #longmont;

8

2013 Australia wildfires #nswfires; #nswbushfire; #nswbushfires; #nswrfs; #sydneybushfire; #sydneyfire; #sydneyfires;
#sydneybushfires; nsw #bushfire; #redoctober; australia #bushfire; #faulconbridge; #nswrfs;
#bushfire sydney; nsw fire; #prayforaustralia; #prayfornsw; australia fire; sydney fire; nsw fires;
australia fires; sydney fires; prayfornsw;

23

2013 Bohol earthquake #phquake; #pheq; #phtrenchquake; philippines earthquake; philippines quake; ph earthquake;
ph quake; #phtrenchquake; #prayforthephilippines; #rescueph; #reliefph; #tabangbohol; #ta-
bangcebu; #bohol; #cebu; prayforvisayas; prayforbohol; #lindol;

18

2013 Glasgow helicopter crash #prayerforglasgow; #helicopter; glasgow helicopter; #clutha; helicopter crash; 5
2013 LA Airport Shootings lax shooting; lax shootings; lax shooter; lax suspect; #laxshooting; lax airport; #lax; airport

shooting; airport shootings; #losangeles airport; lax victims;
11

2013 NYC train crash #newyork derailment; ny derailment; nyc derailment; #metronorth derailment; #spuyten duyvil;
#nyctrain; new york derailment; metro north derailment; #metronorth derailment; ny train crash;
nyc train crash; newyork train crash; york train crash; #metronorth train crash; metro north
crash; ny train derailed; york train derailed; nyc train derailed;

18

2013 Sardinia Floods sardinia floods; sardinia flooding; cyclone cleopatra; #cyclonecleopatra; #sardinia; sardegna al-
luvione; #cleopatra alluvione; #sardegna;

8

2013 Typhoon Yolanda #typhoonyolanda; #yolandaph; #yolanda; #haiyan; #tracingph; #floodph; #safenow; #res-
cueph; #reliefph; typhoon yolanda; typhoon haiyan; typhoon philippines; #typhoonhaiyan; #ty-
phoonaid; #philippines; #typhoon; #supertyphoon; #redcrossphilippines; #yolandaactionweek-
end; rescue ph; typhoon ph; super typhoon;

22
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