Social Data for Social Good & a Biased Perspective on Research Impact

Alexandra Olteanu

Social Computing + **Computational Social Science**

April 23, 2018 — WinDS, The Web Conference

IBM Science for Social Good

Data Science Department **IBM TJ Watson Research Center**

Social good applications that leverage social data

Identify several data and methodological challenges

Highlight several ways in which you can have impact

Online Social Data

Play lists Pageviews Crowd-funding Bookmarks Recommendations Collaborative editing Activity tracking Collaborative coding **Content generation**

The Underlying Idea

We can analyze such user, behavioral traces to learn about the world.

Social Good

A Biased Set of Application Domains

Humanitarian crises/Social media use Are we collecting the right data? Can we generalize observations from one dataset to other seemingly similar datasets?

Climate change/Media coverage bias Is social media a good proxy for some phenomena of interest?

Minority issues/BlackLivesMatter movement Is the user sample representative?

Health/Distilling outcomes from self-reports Can we extract causal relations among personal events from social media?

Hate speech/The effect of external events and of user traits How do we evaluate systems that work with "subjective" concepts? How do external events impact online phenomena?

[ICWSM'14, CSCW'15]

[AAAI SSS'16]

[ICWSM'16, CSCW'17]

[WebSci'17, ICWSM'18]

Humanitarian crises/Social media use

How can we retrieve comprehensive collections of crisis related messages? Are we collecting the right data?

What kind of information is posted on social media during different type of crises? Can we generalize findings from one dataset to other seemingly similar datasets?

Humanitarian crises/Social media use

How can we retrieve comprehensive collections of crisis related messages? Are we collecting the right data?

What kind of information is posted on social media during different type of crises? Can we generalize findings from one dataset to other seemingly similar datasets?

with Carlos Castillo, Fernando Diaz, and Sarah Vieweg [ICWSM'14]

Data Collection: How Is It Done?Tweets are queried byMaximum 1% of all tweets

Content

#prayforwest
#abflood

Location

longitude: [-97.5, -96.5] & latitude: [31.5, 32]

Low recall: 33% Not everyone uses the keywords. Maximum 400 terms.

Low precision: 12% Not everyone on the ground talks about the event. Maximum 25 geo-rectangles.

Data Collection: How Is It Done? Maximum 1% of all the access Tweets are queried by

Content

#prayforwest #abflood

Location

longitude: [-97.5, -96.5] & latitude: [31.5, 32]

Low recall: 33% Not everyone uses the keywords. Maximum 400 terms.

Low precision: 12% Not everyone on the ground talks about the event. Maximum 25 geo-rectangles.

Data Collection: How Is It Done? Maximum 1% of all the access Tweets are queried by

Content

#prayforwest #abflood

Location

longitude: [-97.5, -96.5] & latitude: [31.5, 32]

We need better data collection pipelines!

Low recall: 33% Not everyone uses the keywords. Maximum 400 terms.

Low precision: 12% Not everyone on the ground talks about the event. Maximum 25 geo-rectangles.

Key Insight: Distill a Crisis Lexicon

- damage
 affected people
- people displaced <</p>
- donate blood
- text redcross
- stay safe
- crisis deepens
- evacuated
- toll raises

Gov. McDonnell: Virginia 'Spared' in Hurricane Sandy Damage patch.com/A-zgoL

Deeply touched by the blast at the Boston Marathon. Our thoughts with the affected people and their families. EH

NOTE: Oklahoma University is providing shelter in their dorm facilities for people displaced by the tornado in OK today - @KFOR

If you are able to donate blood- Providence Hospital will have a blood drive in Waco from 11 a.m. to 5 p.m. **#prayforwest**

Best way to help tornado victims is to donate to the Red Cross at redcross.org or text REDCROSS to 90999. #okwx

This flooding is crazy! Hoping my fellow Albertans and Calgarians stay safe! **#abflood #yycflood**

Construction exicon Sicon

1. Label tweets

Separate related from non-related tweets: 53.7% crisis-related

2. Extract & rank discriminative terms Use statistical tests to extract terms more likely to appear in crisis tweets (e.g. Chi2, PMI)

keyword-based

geo-based

1. Label tweets

Separate related from non-related tweets: 53.7% crisis-related

2. Extract & rank discriminative terms Use statistical tests to extract terms more likely to appear in crisis tweets (e.g. Chi2, PMI)

3. Revise terms

Strong crisis-terms. Weakly crisis-terms. Non-crisis terms. Names of places, people, etc.

keyword-based

geo-based

1. Label tweets

Separate related from non-related tweets: 53.7% crisis-related

2. Extract & rank discriminative terms Use statistical tests to extract terms more likely to appear in crisis tweets (e.g. Chi2, PMI)

3. Revise terms

Strong crisis-terms. Weakly crisis-terms. Non-crisis terms.

Names of places, people, etc.

4. Remove co-occurring terms with lower scores Maximum weighted coverage set on the term co-occurrence graph.

keyword-based

geo-based

_	
)	

1. Collect tweets

x hours of pseudo-relevant tweets.

_	
)	

1. Collect tweets

x hours of pseudo-relevant tweets.

2. Extract & rank terms

Hashtags, unigrams & bigrams. Use label propagation or frequency to rank terms.

_	
)	

1. Collect tweets

x hours of pseudo-relevant tweets.

2. Extract & rank terms

Hashtags, unigrams & bigrams. Use label propagation or frequency to rank terms.

3. Add k new terms to the lexicon

Explore various sampling strategies.

_	
)	

Precision vs. Recall

Precision is straightforward to measure. Recall requires a complete data collection. We use geo data as proxy.

Precision vs. Recall Precision is straightforward to measure. Recall requires a complete data collection. We use geo data as proxy.

Precision vs. Recall Precision is straightforward to measure. Recall requires a complete data collection. We use geo data as proxy.

Precision vs. Recall Precision is straightforward to measure. Recall requires a complete data collection. We use geo data as proxy.

Humanitarian crises/Social media use

How can we improve the data collection pipeline during crises/sudden onset events? Do we collect the right data?

What are the differences in social media use during different type of crises? Can we generalize findings from one dataset to other similar datasets?

with Carlos Castillo and Sarah Vieweg [CSCW'15]

✓ Twitter sample API Keyword-based searches \checkmark 26 crisis events ✓ 1000 annotated tweets per crisis

- ✓ Twitter sample API ✓ 2012 & 2013
 - ~ 1% random sample of Twitter public stream \checkmark ~130+ million tweets per month
- Keyword-based searches
- \checkmark 26 crisis events
- ✓ 1000 annotated tweets per crisis

✓ Twitter sample API Keyword-based searches \checkmark 26 crisis events ✓ 1000 annotated tweets per crisis

- ✓ Twitter sample API
- ✓ Keyword-based searches
 - ✓ proper names of affected location
 ✓ manila floods, boston bombings, #newyork derailment
 - proper names of meteorological phenomena
 sandy hurricane, typhoon yolanda
 - ✓ promoted hashtags

✓ #SafeNow, #RescuePH, #ReliefPH

✓ 26 crisis events ✓ 1000 annotated tweets per crisis

ted location gs, #newyork derailment orological phenomena

✓ Twitter sample API Keyword-based searches \checkmark 26 crisis events ✓ 1000 annotated tweets per crisis

- ✓ Twitter sample API
- ✓ Keyword-based searches
- \checkmark 26 crisis events
 - ✓ 14 countries and 8 languages
 - ✓ 12 different hazard types
 - ✓ 15 instantaneous crises
- ✓ 1000 annotated tweets per crisis

✓ earthquakes, wildfires, floods, bombings, shootings, etc.

✓ Twitter sample API Keyword-based searches \checkmark 26 crisis events ✓ 1000 annotated tweets per crisis

- ✓ Twitter sample API
- Keyword-based searches
- ✓ 26 crisis events
- ✓ 1000 annotated tweets per crisis
 - Content dimensions
 - ✓ Informativeness
 - ✓ Source of information
 - \checkmark Type of information
 - Crowdsource workers from the affected countries

Data Patterns: Types

lower similarity

Data Patterns: Types

lower similarity

Sources & Message Types

Infrast. & Utilities	-		
Caution & Advice	_		
Donat. & Volun.			
Affected Ind.			
Sympathy	_		
Other Useful Info.			
	Media	Outsiders	

		to to and to the second second	
Infrast. & Utilities			
Caution & Advice	_		
Donat. & Volun.			
Affected Ind.			
Sympathy	_		
Other Useful Info.			
	Media	Outsiders	-

12h 24h 36

•	•	•	•
•	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •
•	•	•	•
• •	• • •	•)) (
•••••••••••••••	•	•	•
•	•	•	•
• • •	• • •	•	•
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , , ,
•	• •	•	•
•	•	•	•
•	•	•	•
•	••••••••••••••••••••••••••••••••••••••	,	,
• •	• •	• •)) (
• •	• •	•	• •
	fixe e su cere e	00000	•• • • • • • • • • • • •
olorado wild	tires worse	n, 32000	•
- goo.gl/ne	awe/ehzz w	<i>i</i> a	•
g00.g//10		ia	, , , , , , , , , , , , , ,
le.com			•
•	•	•	•
•		•	
•	•	•	•
•	•	•	D
36h 48	3h se	everal days	

12h

24h

36h

•••

12h

24h

36h 48h ... several days

24h

UNOCHA World Humanitarian Data and Trends 2014 Lexicons used by e.g., GDELT to annotate news

We need better data collection pipelines We need to better understand what factors shape the datasets at origin

Why It Matters?

Annotated datasets used by 100+ new studies (see <u>crisislex.org</u>)

Climate change/Media coverage bias

Do social and mainstream media differ in their coverage of climate change? Is social media a good proxy for some phenomena of interest?

with Carlos Castillo, Nick Diakopoulos, and Karl Aberer [ICWSM'15]

Operational Definition

"A change of climate which is attributed directly or indirectly to human activity that alters the composition of the **global atmosphere** and which is in addition to natural **(limate variability** observed over comparable time periods."

United Nations Framework for Climate Change

Operational Definition

"A change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural **(limate variability** observed over comparable time periods."

- ✓ defines a problem
- ✓ identifies its causes
- makes a moral judgement
- ✓ suggests a remedy

United Nations Framework for Climate Change

Sis

1. Domain Data

P P P P Zis Sis

1. Domain Data

#ClimateChange #cop21, rising seas, ...

Env_ClimateChange Env_CarbonCapture, ...

Pipelin Pipelin Zis Sis

1. Domain Data

#ClimateChange #cop21, rising seas, ...

Env_ClimateChange Env_CarbonCapture, ...

2. Automated Event

Detects spikes within a month-long time window [Lehmann et al., WWW'12].

P P P P P **Sis**

1. Domain Data

#ClimateChange #cop21, rising seas, ...

Env_ClimateChange Env_CarbonCapture, ...

2. Automated Event

Detects spikes within a month-long time window [Lehmann et al., WWW'12].

3. Events Curation &

Merge duplicates & remove ambiguous or not-relate events.

Categorize events.

P P P P P P **Sis**

1. Domain Data

#ClimateChange #cop21, rising seas, ...

Env_ClimateChange Env_CarbonCapture, ...

2. Automated Event

Detects spikes within a month-long time window [Lehmann et al., WWW'12].

3. Events Curation &

Merge duplicates & remove ambiguous or not-relate events.

Categorize events.

N O I Sis

1. Domain Data

#ClimateChange #cop21, rising seas, ...

Env_ClimateChange Env_CarbonCapture, ...

2. Automated Event

Detects spikes within a month-long time window [Lehmann et al., WWW'12].

3. Events Curation &

Merge duplicates & remove ambiguous or not-relate events.

Categorize events.

P P P P P **Nalysis**

1. Domain Data

#ClimateChange #cop21, rising seas, ...

Env_ClimateChange Env_CarbonCapture, ...

2. Automated Event

Detects spikes within a month-long time window [Lehmann et al., WWW'12].

3. Events Curation &

Merge duplicates & remove ambiguous or not-relate events.

Categorize events.

4. Data

Event types prevalence across the two media.

Data Collections 17 months in 2013/2014 Social Media (Twitter) News Media (GDELT) major international, national, 1% stream (via Internet Archive) regional, and local news sources ~2 billion tweets ~30 million news articles **240 terms** 40 themes & taxonomies (e.g., rise sea, #acidification) (e.g., movement_environmental) ~480,000 ~560,000 428 peaks/111 events 218 peaks/100 events

Data Collections 17 months in 2013/2014 News Media (GDELT) Social Media (Twitter) major international, national, 1% stream (via Internet Archive) regional, and local news sources ~2 billion tweets ~30 million news articles 40 themes & taxonomies 240 terms (e.g., rise sea, #acidification) (e.g., movement_environmental) Only 25 events occur in both! 428 peaks/111 events 218 peaks/100 events

		Legal Actions	Publication	Meetings	Other.
	News	17%	24%	13%	8%
Gov. Twitter	Twitter	21%	13%	4%	16%
Individuals News Twitter	2%	0%	0%	2%	
	Twitter	1%	0%	0%	13%
Media News Twitter	0%	1%	0%	0%	
	Twitter	0%	7%	0%	2%

Prevalence of extensively covered disaster events in the News and Twitter

Coverage Across Media

Prevalence of Actor/Action combination for extensively covered events in the News and Twitter

Coverage Across Media

Prevalence of Actor/Action combination for extensively covered events in the News and Twitter

Events Newsworthiness News Values (how much prominence is given to a news story)

Extraordinary Unpredictable High magnitude Conflictive Related to elite persons Negative

Differences significant at p<0.05

Events Newsworthiness News Values (how much prominence is given to a news story)

Extraordinary

Negative

Conflictive

Unpredictable

High magnitude

Related to elite persons

10.1	%
18.8	%

14.7%

89.9%	
81.2%	
85.3%	

Differences significant at p<0.05
Minority issues/BlackLivesMatter movement demographics

What demographics use more the #BlackLivesMatter hashtag on social media? Is the user sample representative?

with Ingmar Weber and Daniel Gatica-Perez [AAAI SSS'15]

There is a growing number of discussions on minority issues.

There is a growing number of discussions on minority issues.

There is a growing number of discussions on minority issues.

Very rough estimates based on:

- Demographics of social media, Pew Research 2015
- Demographics of the United States in 2010, US census

There is a growing number of discussions on minority issues.

- Demographics of social media, Pew Research 2015
- Demographics of the United States in 2010, US census

There is a growing number of discussions on minority issues.

- Demographics of social media, Pew Research 2015
- Demographics of the United States in 2010, US census

There is a growing number of discussions on minority issues.

Very rough estimates based on:

- Demographics of social media, Pew Research 2015
- Demographics of the United States in 2010, US census

There is a growing number of discussions on minority issues.

White

Black

- Very rough estimates based on:
- Demographics of social media, Pew Research 2015
- Demographics of the United States in 2010, US census

Twitter user demographics (US) **#BlackLivesMatter Content (Individuals)**

Overlooking latent patterns or signals can lead to wrong or misleading observations!

Asian

Others

Why It Matters?

Inform the public through citations, e.g., by mainstream media or in Amici Curiae Briefs

We need to understand the validity of our assumptions about the working datasets

Health/Distilling outcomes from self-reports

What can we learn about the outcomes of people experiences from social media? Can we extract causal relations among personal event from social media data?

Health/Distilling outcomes from self-reports

What can we learn about the outcomes of people experiences from social media? Can we extract causal relations among personal event from social media data?

with Emre Kiciman and Onur Varol [ICWSM'16, CSCW'17]

Goal: Build an **open** and **domain agnostic** system for querying about the outcomes of **any** experience people may have.

Goal: Build an open and domain agnostic system for querying about the outcomes of any experience people may have.

- "Long-tail" of situations and experiences
 - Explore a situation: What happens ...?

 - Plan for outcomes/goals: How to …? •
- Applications for individuals, policy makers, and others

• when depressed, after disease diagnosis, after being fired, ...

Understand the effects of a potential action: Should I ...?

get pregnant, ask for divorce, lose belly fat, change last name, ...

lose weight, get admitted to MIT, increase income, find true love

Social Media Posts: A Proxy to User Experiences

Social Media Posts: A Proxy to User Experiences

Experiences & situations

I ate lots of fried things today and thoroughly enjoyed it.

I'm glad I went to the show. It was an experience I had to have, and I'm thankful.

I had my first car accident this morning

Social Media Posts: A Proxy to User Experiences

Experiences & situations

I ate lots of fried things today and thoroughly enjoyed it. 🥮 🎱 🍗

Everyone got problems losing weight and I got problems gaining weight 😭

I'm glad I went to the show. It was an experience I had to have, and I'm thankful.

nice.

I had my first car accident this morning

Not having a car this week and maybe next week will be the longest, most hardest thing ever 😫 What a great Valentines Day 😟

Post-hoc events (potential outcomes)

i was just woken up to a strawberry milkshake and a relaxed household. this is

Social Media Timelines: Experiencing Depression

Social Media Timelines: Experiencing Depression

Confounding Bias & Matching

Confounding Bias & Matching

Matching: For every user with a particular experience, find another user with identical characteristics (prior to the experience) who didn't have the experience

Confounding Bias & Matching

What Kind of Outcomes We Distill?

Causal-like relations discovered at higher rates (from **ConceptNet5**)

- **implementation steps** e.g., HasSubEvent, HasFirstSubEvent
- motivations and prerequisites e.g., MotivatedByGoal, HasPrerequisite
- implications e.g., Desires, NotDesires, CapableOf, UsedFor, Causes
- We miss more conceptual or descriptive relationships definitions, alternate names or similar actions e.g., DefinedAs, RelatedTo, IsA, SimilarTo

Noti	Desires Cau	ses Rec	eives Activ	on sesDesire Has	Property Has	A Defi	nedAs Not	CapableC Rela	atedTo 15A	Sim	larTo Deri
%	46%	42%	41%	40%	38%	31%	38%	30%	25%	9%	13% -
%	47%	43%	45%	41%	40%	39%	38%	26%	26%		12% -
2%	45%	44%	53%	41%	42%	42%	38%	28%	27%		14% -
2%	50%	49%	41%	45%	43%	38%	39%	42%	32%		17% -
2%	55%	46%	33%	44%	44%	44%	38%	43%	32%	17%	22% -

Hate speech/Impact of external events & user aspects

How do extremist events impact the prevalence of hate speech online? How do external factors impact online phenomena?

Do user aspects impact how they perceive online hate speech? How do we evaluate systems that work with "subjective" concepts?

Hate speech/Impact of external events & user aspects

How do extremist events impact the prevalence of hate speech online? How do external factors impact online phenomena?

Do user aspects impact how they perceive online hate speech? How do we evaluate systems that work with "subjective" concepts?

with Carlos Castillo, Jeremy Boy, and Kush Varshney [ICWSM'18]

Operationalizing Hate Speech

#agendaofevil, #attackamosque, #banislam, #bansharia, #cantcoexistwithislam, #deathcult, #deleteislam, #deportallmuslims, #extremistsarenotmuslim, #fuckallah, #fuckislam, **#illridewithyou**, #islamicinvasion, #islamistheproblem, #killallmuslims, #marchagainstsharia, #norapeugees, **#notinmyname**, #religionofhate, **#takeonhate**, #stopimportingislam, #weareallmuslim, #stopmoslemsinvasion, #islamisevil, #terrorismhasnoreligion

Speech that could be perceived as offensive, derogatory, or in any way <u>harmful</u>, and that is motivated, in whole or in a part, by someone's bias against an aspect of a group of people, or related to <u>commentary</u> about such speech by others, or related to speech that aims to <u>counter</u> any type of speech that this definition covers.

Two different social platforms: Twitter (107 M) and Reddit (45 M) Various types of hate speech, based on stance, intensity, target, frame

Study Setup

The Events Impact on Hateful Speech

- 3. Aggregate results: distribution of effects across platforms and types of speech

Query: evil muslim

Events:

(Right) Olathe Kansas shooting (Left) Orlando nightclub shooting

1. Predict the counterfactual: what would had happen had no event taken place 2. Estimate the effect: the difference among observed series and the predicted ones

Estimated Relative Effects

100

Orlando nightclub shooting

We observed:

- an increase in hate speech targeting Muslims after Islamic terrorist attacks
- an increase in counter speech terms after Islamic terrorist attacks
- an increase in counter speech terms related to religion

Hate speech/Impact of external events & user aspects

How do external events impact the prevalence of hateful chatter online? How do external factors impact online phenomena?

Do user traits impact how they perceive online hateful chatter? How do we evaluate systems that deal with "subjective" concepts?

with Kartik Talamadupula and Kush Varshney [WebSci'17]

Hate Speech Classification: Experimental Setup

Annotated tweets	Hate speech	Offensive but not hate speech	Not offensive	
14509	2399	4836	7274	
	True positives	False Positives	False positives	
		Low cost errors	High cost errors	

Hypothetical classification task: Detect and output social media posts classified as hate speech

- Low cost: misclassifying other types of offensive posts
- High cost: misclassifying non-offensive posts
- ix precision, vary error types by cost.

Hate Speech: Error Types

Hate speech detection:

• High cost: misclassify non-offensive posts as hate speech

• Low cost: misclassify other types of offensive posts as hate speech

User Traits: Stance & Experience

Total annotations: 8 (precision points) X 2 (error types) X 5 (annotations) X 6 (samples) Were you ever the direct target of hate speech?

Yes, unfortunately

No, but I've experienced other forms of online harassment

No, never

How important it is to moderate hate speech content on social media?

I think this is increasingly necessary

Some form of moderation is needed, but I also worry about free speech rights It is not necessary. If you don't like what folks say, do not engage with them

User Traits & Their Perception of Performance

Those targeted by hate speech online appear to apply a broader definition of what constitutes hate speech.

Why It Matters?

Understand behavioral phenomena of societal importance, third-party interventions and other policy questions

We need new ways to evaluate computational systems We need to develop and apply techniques that reduce the effects of data biases

Research Paths & Impact

Types of Contributions

- A more efficient solution to a known problem An interesting solution to a known problem Introduces a new problem (e.g., the solution matters less) Makes the community contributions more accessible Clarifies the trade-offs and gaps of existing approaches • includes negative results, meta-analyses, etc.

Some Rationales

- Impact more important than being faithful to a topic
 - I decided the topic of my thesis with 3 months before defense
- Do what others don't want to do
- Optimize for relevance within the application domain
- Focus on what can be done, not on what cannot be done
- Illuminating a problem as important as solving a problem

Some Rationales

Impact more important than being faithful to a topic

Do what others don't want to do

- I decided the topic of my thesis with 3 months before detense
- Optimize for relevance within the application domain
- Focus on what can be done, not on what cannot be done
- Illuminating a problem as important as solving a problem

Impact Can Have Many Flavors

Some Types of Impact

Scientific impact/make a breakthrough Popularize a methodological approach Enable others to do more/better work • release data, tools, surveys, etc. Great teaching material Policy impact/news coverage

Collaboration Is Important

Collaborators

Advisor(s) Outside mentors • from internships shared interests visiting professors Lab mates

Students

Collaborators

Advisor(s) Outside mentors • from internships shared interests visiting professors Lab mates Students

Finding Mentors

Remember

- they are busy
- they have their own priorities/interests
- Align your goals with their interests Do not overestimate their benefits
- They can help with more than research • networking, support, endorsement, etc.

Finding Mentors

Remember

- they are busy
- they have their own priorities/interests

Take their interests into account Advisor shoes Put them first

- review their work \Rightarrow will help you write better.

presentations. You learn better when you explain it to others

Be a Mentor

• do dry-runs with them \Rightarrow will help you make better

Take their interests into account Advisor shoes Put them first

- review their work \Rightarrow will help you write better.

Be a Mentor

Receiving Feedback: A Few "Do not(s)"

Don't be critical of how people give you (solicited) feedback "You do not know how to give feedback" Don't get defensive and argumentative "You are wrong" "You did not understand it" Don't try to figure it out on the spot, take time

Receiving Feedback: A Few "Do not(s)"

Don't be critical of how people give you (solicited) feedback "You do not know how to give feedback" Don't get defensive and argumentative "You are wrong" "You did not understand it" Don't try to figure it out on the spot, take time Be grateful!

Err on the side of giving others more credit, than less credit Ignoring it, likely the easiest way to make people resentful It's easy to think your contributions are more valuable than of others

KEEP CALM AND QUESTION EVERYTHING

Email: alexandra@aolteanu.com

Web: aolteanu.com

Twitter: @o_saja

KEEP CALM AND QUESTION EVERYTHING